zbMATH — the first resource for mathematics

Existence of solutions of Signorini problems with friction. (English) Zbl 0554.73096
The author has proved the existence of a solution of the Signorini problem of a linear elastic body in unilateral contact with a rigid support and subjected to conditions of Coulomb friction. He has also shown that if the coefficient of friction is small, then the problem has a unique solution.
Reviewer: P.Narain

74A55 Theories of friction (tribology)
74M15 Contact in solid mechanics
74G30 Uniqueness of solutions of equilibrium problems in solid mechanics
74H25 Uniqueness of solutions of dynamical problems in solid mechanics
Full Text: DOI
[1] Duvaut, G.; Lions, J.L., LES inéquations en Mécanique et en physique, (1972), Dunod Paris, Chap. 3 · Zbl 0298.73001
[2] Fichera, G., (), 391-424
[3] Fichera, G., Mem. accad. naz. lincei, 8, 91, (1964)
[4] Lions, J.L.; Stampacchia, G., Comm. pure appl. math., 20, 493, (1967)
[5] Necas, J., Rend, di matematica serie VI, 8, 481, (1975)
[6] Lions, J.L.; Magenes, E., Problèmes aux limites non homogènes et applications, (1968), Dunod Paris · Zbl 0165.10801
[7] Duvaut, G., C.R. acad. sc. Paris Série A, 290, 263, (1980)
[8] Bensoussan, A.; Lions, J.L.; Bensoussan, A.; Lions, J.L., C.R. acad. sc. Paris Série A, C.R. acad. sc. Paris Série A, 276, 1333, (1973)
[9] Fan, K., (), 103-113
[10] Brezis, H.; Nirenberg, L.; Stampacchia, G., Bolletino U.M.I., 6, 293, (1972)
[11] Brezis, H., Ann. inst. Fourier, 18, 115, (1968)
[12] Lions, J.L., Quelques Méthodes de Résolution des problèmes aux limites non linéaires, (1969), Dunod and Gauthier-Villars Paris · Zbl 0189.40603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.