×

A use for frequently rediscovering a concept. (English) Zbl 0558.06010

This communication is a historical note on the many rediscoveries of lower semidistributive (LSD) lattices which included many different characterizations of LSD.
Reviewer: G.Kalmbach

MSC:

06D05 Structure and representation theory of distributive lattices
06-03 History of ordered structures
01A60 History of mathematics in the 20th century
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] S. P. Avann (1961a) Application of the join-irreducible excess function to semimodular lattices,Math. Ann. 142, 345-354. · Zbl 0094.01603
[2] S. P. Avann (1961b). Distributive properties in semimodular lattices,Math. Z. 76, 283-287. · Zbl 0207.32103
[3] S. P. Avann (1964) Increases in the join-excess function in a lattice,Math. Ann. 154, 420-426. · Zbl 0202.31703
[4] S. P. Avann (1968) Locally atomic upper locally distributive lattices,Math. Ann. 175, 320-336. · Zbl 0157.34203
[5] S. P. Avann (1972) The lattice of natural partial orders,Aequationes Math. 8, 95-102. · Zbl 0251.06005
[6] J. P. Barthelemy, Cl. Flament, and B. Monjardet (1982) Ordered sets and social sciences, inOrdered Sets (ed. I. Rival), D. Reidel, Dordrecht, pp. 721-758. · Zbl 0493.90005
[7] M. K. Bennett (1968) A lattice characterization of convexity,J. Comb. Theory 5, 198-202. · Zbl 0167.48902
[8] M. K. Bennett (1971) Generalized convexity lattices,J. Comb. Theory 10, 140-144. · Zbl 0219.06008
[9] M. K. Bennett (1980) Convexity closure operators,Alg. Univ. 10, 345-354. · Zbl 0471.52002
[10] G. Boulaye (1967) Sous-arbres et homomorphismes ? classes connexes dans un arbre inTheory of Graphs International Symposium, Gordon and Breach, New York, pp. 47-50. · Zbl 0183.52502
[11] G. Boulaye (1968a) Sur l’ensemble ordonn? des parties connexes d’un graphe connexe,R.I.R.O., 13-25. · Zbl 0167.21903
[12] G. Boulaye (1968b) Notion d’extension dans les treillis et m?thodes bol?ennes,Rev. Roum. Maths. Pures Appl. 13-9, 1225-1231. · Zbl 0185.03702
[13] P. Crawley and R. P. Dilworth (1973) Algebraic theory of lattices, Prentice Hall, Inc., Englewood Cliffs. · Zbl 0494.06001
[14] R. A. Dean and G. Keller (1968) Natural partial orders,Canad. J. Math. 20, 535-554. · Zbl 0174.29701
[15] R. P. Dilworth (1940) Lattices with unique irreducible decompositions,Ann. Math. 41, 771-777. · Zbl 0025.10202
[16] R. P. Dilworth (1941) Ideals in Birkhoff lattices,Trans. Amer. Math. Soc. 49, 325-353. · Zbl 0025.01203
[17] R. P. Dilworth (1961) Structure and decomposition of lattices, inLattice Theory, Amer. Math. Soc. Providence, pp. 3-16.
[18] R. P. Dilworth and P. Crawley (1960) Decomposition theory for lattices without chain conditions,Trans. Amer. Math. Soc. 96, 1-22. · Zbl 0091.03004
[19] P. H. Edelman (1980) Meet-distributive lattices and the antiexchange closure,Alg. Univ. 10, 290-299. · Zbl 0442.06004
[20] P. H. Edelman (1982) The lattice of convex sets of an oriented matroid,J. Comb. Theory B33, 239-244. · Zbl 0488.05024
[21] P. H. Edelman and P. Klingsberg (1982) The subposet lattice and the order polynomialEur. J. Comb. 2, 341-346. · Zbl 0504.06004
[22] C. Greene and G. Markowsky (1974) A combinatorial test for local distributivity, Research Report RC 5129, IBM T. J. Watson Research Center, Yorktown Heights, New York.
[23] R. E. Jamison (1970) A development of axiomatic convexity, Tech. Report 48, Clemson University Math., pp. 15-20.
[24] R. E. Jamison (1980) Copoints in antimatro?ds,Congr. Num. 29, 535-544.
[25] R. E. Jamison (1982) A perspective on abstract convexity: classifying alignments by varieties, inConvexity and Related Combinatorial Geometry, (eds. D. G. Kay and M. Breen), Marcel Dekker, New York, pp. 113-150.
[26] G. Markowsky (1980) The representation of posets and lattices by sets,Alg. Univ. 11, 173-192. · Zbl 0449.06007
[27] J. L. Pfaltz (1969) Semi-homomorphisms of semimodular lattices,Proc. Amer. Math. Soc. 22, 418-425. · Zbl 0179.03202
[28] J. L. Pfaltz (1971) Convexity in directed graphs,J. Comb. Theory 10, 143-162. · Zbl 0209.55803
[29] J. S. Pym and H. Perfect (1970) Submodular functions and independence structures,J. Math. Anal. Appl. 30, 1-31. · Zbl 0169.01902
[30] N. Polat (1976) Treillis de s?paration des graphes,Canad. J. Math. 28, 725-752. · Zbl 0363.05048
[31] I. Rival (ed.) (1982)Ordered Sets, D. Reidel, Dordrecht.
[32] R. P. Stanley (1974) Combinatorial reciprocity theorems,Adv. Math. 14, 194-253. · Zbl 0294.05006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.