Homogenization of linear elastic shells. (English) Zbl 0558.73055

Homogenization techniques were used by G. Duvaut [J. d’Anal. nonlin., Proc., Besançon 1977, Lect. Notes Math. 665, 56-69 (1978; Zbl 0422.73052) and Theor. appl. Mech., Proc. 14th IUTAM Congr., Delft 1976, 119-132 (1977; Zbl 0373.73002)] in the asymptotic analysis of 3- dimensional periodic continuum problems and periodic von Kármán plates. In this paper we homogenize Budiansky-Sanders linear, elastic shells with material parameters rapidly oscillating on the shell surface. We obtain a homogenized shell model which is elliptic and depends on explicitly calculated effective material parameters. We show that the solution of the periodic shell model converges weakly to the solution of the homogenized model when the period tends to zero.


74K15 Membranes
74E05 Inhomogeneity in solid mechanics
74A20 Theory of constitutive functions in solid mechanics
Full Text: DOI


[1] R.A. Adams, Sobolev Spaces, Academic Press, New York (1975).
[2] M. Artola and G. Duvaut, Homogénésation d’une plaque renforcée. C.R. Acad. Sc. Paris, Série A 284 (1977) 707–710. · Zbl 0351.73088
[3] I. Babuška, Solution of interface problems by homogenization I, II and III. SIAM J. Math. Anal. 7 (1976) 603–634, 635–645; 8 (1977) 923–937. · Zbl 0343.35022
[4] A. Bensoussan, J.L. Lions and G. Papanicolau, Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978). · Zbl 0404.35001
[5] M. Bernadou and P.G. Ciarlet, Sur l’ellipticité du modèle linéaire de coques ed. W.T. Koiter. Computing Methods in Applied Sciences and Engineering, Lecture Notes in Economics and Mathematical Systems 134, Springer-Verlag, Berlin (1976) pp. 89–138.
[6] B. Budiansky and J.L. Sanders, On the ”best” first-order linear shell theory, Progress in Applied mechanics, W. Prager Anniversary Volume, Macmillan, New York (1967) pp. 129–140.
[7] D. Cioranescu, J. Saint-Jean-Paulin and H. Lanchon, Elastoplastic torsion of heterogeneous cylindrical bars. J. Inst. Maths. Applics. 24 (1979) 353–378. · Zbl 0453.73059
[8] P. Destuynder, Sur une justification des modèles de plaques et de coques par les methodes asymptotiques. Thèse, Université Paris VI (1980).
[9] G. Duvaut, Analyse Fonctionnelle et mécanique des milieux continus. Application à l’étude des Matériaux composites élastiques à structure périodique-homogénéisation. In: W.T. Koiter (Ed.) Theoretical and Applied Mechanics, North-Holland (1976) pp. 110–132.
[10] G. Duvaut, Homogénéisation des plaques à structure périodique en Théorie non-linéaire de von Kármán. Journées d’Analyse Non-Linéaire, Lecture Notes in Mathematics 665, Springer-Verlag, Berlin (1978) pp. 56–69.
[11] G. Duvaut and J.L. Lions, Les inéquations en mécanique et en physique. Dunod, Paris (1972). · Zbl 0298.73001
[12] E.de Giorgi, Convergence problems for functionals and operators. In: E.de Giorgi, E. Magenes and U. Mosco (eds.) Proc. of the Int. Meeting on Recent Methods in Non-Linear Analysis, Pitagora Editrice, Bologna (1978) pp. 131–188.
[13] A. Lutoborski, and J.J. Telega, Homogenization of a plane elastic arch. J. Elasticity 14 (1984) 65–77. · Zbl 0537.73078
[14] L. Tartar. Cours Peccot, Collège de France (1977).
[15] R. Valid, La mécanique des milieux continus et le calcul des structures. Eyrolles, Paris (1977). · Zbl 0454.73003
[16] V.V. Zhikov, S.M. Kozlov, O.A. Oleinik and Kha Thien Ngoan, Homogenization and G-convergence of differential operators. Uspekhi Mat. Nauk 34 (1979) 65–133.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.