×

zbMATH — the first resource for mathematics

Thirteen ways to estimate global error. (English) Zbl 0562.65050
Various techniques that have been proposed for estimating the accumulated discretization error in the numerical solution of differential equations, particularly ordinary differential equations, are classified, described, and compared. For most of the schemes either an outline of an error analysis is given which explains why the scheme works or a weakness of the scheme is illustrated.

MSC:
65L05 Numerical methods for initial value problems involving ordinary differential equations
65G50 Roundoff error
PDF BibTeX Cite
Full Text: DOI EuDML
References:
[1] Brandt, A.: Guide to multigrid development. In: Multigrid methods; Proc. Köln-Porz 1981 (W. Hackbusch, U. Trottenberg, eds.), Lect. Notes Math., Vol. 960, pp. 220-312. Berlin-Heidelberg-New York: Springer 1982
[2] Butcher, J.C.: The effective order of Runge-Kutta methods. In: Conference on the numerical solutions of differential equations; Proc. Dundee 1969. Lect. Notes Math., Vol. 109, pp. 133-139. Berlin-Heidelberg-New York: Springer 1969
[3] Byrne, G.D., Hindmarsh, A.C.: A polyalgorithm for the numerical solution of ordinary differential equations. ACM Trans. Math. Software1, 71-96 (1975) · Zbl 0311.65049
[4] Clenshaw, C.W., Oliver, F.W.J.: Solution of differential equations by recurrence relations. Math. Tab. Wash.5, 34-39 (1951) · Zbl 0045.06701
[5] Dahlquist, G.: On the control of the global error in stiff initial value problems. In: Numerical Analysis; Proc. Dundee 1981. Lect. Notes Math., Vol. 912, pp. 38-49. Berlin: Springer 1981
[6] Dalle Rive, L., Pasciutti, F.: Runge-Kutta methods with global error estimates. J. Inst. Maths. Applics.16, 381-388 (1975) · Zbl 0328.65040
[7] Epstein, B., Hicks, D.: Computational experiments on two error estimation procedures for ordinary differential equations. AFWL-TR-78-119, Air Force Weapons Lab, Kirtland AFB, NM, 1979
[8] Epstein, B., Hicks, D.L.: Comparison between two error estimation procedures. In: Information linkage between applied mathematics and industry (P.C.C. Wang, ed.), pp. 293-298. New York: Academic Press 1979
[9] Eriksson, L.O.: MOLCOL ? an implementation of one-leg methods for partitioned stiff ODEs. TRITA-NA-8319, Numer. Anal., R. Inst. of Technology, Stockholm, 1983 · Zbl 0544.65050
[10] Fox, L.: Some improvements in the use of relaxation methods for the solution of ordinary and partial differential equations. Proc. R. Soc. Lond., Ser. A190, 31-59 (1947) · Zbl 0034.22101
[11] Fox, L.: Ordinary differential equations: Boundary-value problems and methods. In: Numerical solution of ordinary and partial differential equations (L. Fox, ed.), pp. 58-72. Oxford: Pergamon Press 1962
[12] Frank, R.: The method of iterated defect-correction and its application to two-point boundary value problems, I. Numer. Math.25, 409-419 (1976) · Zbl 0346.65034
[13] Frank, R.: The method of iterated defect-correction and its application to two-point boundary value problems, II. Numer. Math.27, 407-420 (1977) · Zbl 0366.65034
[14] Frank, R., Hertling, J., Ueberhuber, C.W.: Iterated defect correction based on estimates of the local discretization error. Report No. 18/76, Inst. Numer. Math., Technical University of Vienna, 1976
[15] Frank, R., Macsek, F., Ueberhuber, C.W.: Asymptotic error expansions for defect correction iterates (manuscript) c 1982 · Zbl 0526.65056
[16] Frank, R., Ueberhuber, C.W.: Iterated defect corrections for differential equations, I: Theoretical results. Computing20, 207-228 (1978) · Zbl 0401.65046
[17] Gear, C.W.: Numerical initial value problems in ordinary differential equations. Englewood Cliffs, N.J.: Prentice-Hall 1971 · Zbl 1145.65316
[18] Johnson, L.W., Riess, R.D.: Numerical analysis (2nd edition). Reading, MA: Addison-Wesley 1982 · Zbl 0557.65001
[19] Joyce, D.C.: Survey of extrapolation processes in numerical analysis. SIAM Rev.13, 435-490 (1971) · Zbl 0229.65005
[20] Krogh, F.T.: Private communication (c1975)
[21] Lindberg, B.: Error estimation and iterative improvement for discretization algorithms. BIT20, 486-500 (1980) · Zbl 0459.65036
[22] Mayers, D.F.: Ordinary differential equations: Prediction and correction; deferred correction. In: Numerical solution of ordinary and partial differential equations (L. Fox, ed.), pp. 28-45. Oxford: Pergamon Press 1962
[23] Merluzzi, P., Brosilaw, C.: Runge-Kutta integration algorithms with built-in estimates of the accumulated truncation error. Computing20, 1-16 (1978) · Zbl 0373.65031
[24] Pereyra, V.: On improving an approximate solution of a functional equation by deferred corrections. Numer. Math.8, 376-391 (1966) · Zbl 0173.18103
[25] Prothero, A.: Estimating the accuracy of numerical solutions to ordinary differential equations. In: Computational techniques for ordinary differential equations (I. Gladwell, D.K. Sayers, eds.), pp. 103-128. London: Academic Press 1980 · Zbl 0488.65025
[26] Robinson, A., Prothero, A.: Global error estimates for solutions to stiff systems of ordinary differential equations (contributed paper). Dundee Numer. Anal. Conf. 1977
[27] Shampine, L.F.: Global error estimation for stiff ODEs (manuscript). Dundee Numer. Anal. Conf. 1983
[28] Shampine, L.F., Baca, L.S.: Global error estimates for ODEs based on extrapolation methods. SIAM J. Sci. Stat. Comput.6, 1-14 (1985) · Zbl 0578.65077
[29] Shampine, L.F., Watts, H.A.: Global error estimation for ordinary differential equations. ACM Trans. Math. Software2, 172-186 (1976) · Zbl 0328.65041
[30] Skeel, R.D.: A theoretical framework for proving accuracy results for deferred corrections. SIAM J. Numer. Anal.19, 171-196 (1982) · Zbl 0489.65051
[31] Skeel, R.D.: Computational error estimates for stiff ODEs. In: Proceedings of the first international conference on computational mathematics; Benin City 1983 (S.O. Fatunla, ed.). Dublin: Boole Press (To appear)
[32] Spijker, M.: On the structure of error estimates for finite difference methods. Numer. Math.18, 73-100 (1971) · Zbl 0219.65052
[33] Stetter, H.J.: Local estimation of the global discretization error. SIAM J. Numer. Anal.8, 512-523 (1971) · Zbl 0226.65054
[34] Stetter, H.J.: Analysis of discretization methods for ordinary differential equations. Berlin-Heidelberg-New York: Springer 1973 · Zbl 0276.65001
[35] Stetter, H.J.: Economical global error estimation. In: Stiff differential systems (R.A. Willoughby, ed.), pp. 245-258. New York-London: Plenum Press 1974
[36] Stetter, H.J.: Global error estimation in ODE-solvers. In: Numerical analysis Proc. Dundee 1977 (G.A. Watson, ed.), Lect. Notes Math., Vol. 630, pp. 179-189. Berlin-Heidelberg-New York: Springer 1978
[37] Stetter, H.J.: The defect correction principle and discretization methods. Numer. Math.29, 425-443 (1978) · Zbl 0362.65052
[38] Stetter, H.J.: Tolerance proportionality in ODE-codes. In: Working papers for the 1979 SIG-NUM meeting on numerical ordinary differential equations (R.D. Skeel, ed.), pp. 10.1-10.6. UIUCDCS-R-79-963, University of Illinois, Urbana 1979
[39] Stetter, H.J.: Defect control and global error estimates. Manuscript, presented at a meeting at the University of Toronto, July 15-16 (1982)
[40] Zadunaisky, P.E.: On the estimation of errors propagated in the numerical integration of ordinary differential equations. Numer. Math.27, 21-39 (1976) · Zbl 0324.65035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.