×

zbMATH — the first resource for mathematics

2-local subgroups of Fischer groups. (English) Zbl 0564.20009
Translation from Mat. Zametki 35, No. 3, 333–342 (Russian) (1984; Zbl 0541.20007).
MSC:
20D05 Finite simple groups and their classification
20D08 Simple groups: sporadic groups
20D30 Series and lattices of subgroups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] B. Fischer, ?Finite groups generated by three-transpositions,? Warwick Univ. (1973).
[2] S. A. Syskin, ?Abstract properties of simple sporadic groups,? Usp. Mat. Nauk,35, No. 5, 181-212 (1980).
[3] D. C. Hunt, ?A characterization of the finite simple group M(22),? J. Algebra,21, No. 1, 103-112 (1972). · Zbl 0239.20018 · doi:10.1016/0021-8693(72)90038-5
[4] S. B. Assa, ?A characterization of M(22),? J. Algebra,69, No. 2, 455-466 (1981). · Zbl 0454.20022 · doi:10.1016/0021-8693(81)90215-5
[5] G. M. Enright, ?A description of the Fischer group F22,? J. Algebra,46, No. 2, 334-343 (1977). · Zbl 0356.20011 · doi:10.1016/0021-8693(77)90374-X
[6] G. M. Enright, ?A description of the Fischer group F23,? J. Algebra,46, No. 2, 344-354 (1977). · Zbl 0356.20012 · doi:10.1016/0021-8693(77)90375-1
[7] P. J. Cameron and J. H. Van Lint, Graph Theory, Coding Theory, and Block Designs, Cambridge Univ. Press (1976).
[8] G. M. Enright, ?Subgroups generated by transpositions in F22 and F23,? Commun. A1gebra,6, No. 8, 823-837 (1978). · Zbl 0379.20017 · doi:10.1080/00927877808822270
[9] J. McKay, ?The non-Abelian simple groups G, |G| < 106: character tables,? Commun. Algebra, 7, No. 13, 1407-1445 (1979). · Zbl 0418.20009 · doi:10.1080/00927877908822410
[10] D. C. Hunt, ?Character tables of certain finite simple groups,? Bull. Austral. Math. Soc.,5, No. 1, 1-42 (1971). · Zbl 0215.39802 · doi:10.1017/S0004972700046852
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.