×

A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations. (English) Zbl 0566.73035

See the preview in Zbl 0538.73054.

MSC:

74B99 Elastic materials
74C99 Plastic materials, materials of stress-rate and internal-variable type
74D99 Materials of strain-rate type and history type, other materials with memory (including elastic materials with viscous damping, various viscoelastic materials)
74B20 Nonlinear elasticity
74A20 Theory of constitutive functions in solid mechanics

Citations:

Zbl 0538.73054

Software:

Nike2D
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bernstein, B., Hypo-elasticity and elasticity, Arch. rat. mech. anal., 6, 89-104, (1980) · Zbl 0094.36702
[2] Truesdell, C.; Noll, W., The non-linear field theories of mechanics, () · Zbl 0779.73004
[3] Simo, J.C.; Pister, K.S., Remarks on rate constitutive equations for finite deformation problems: computational implications, Comput. meths. appl. mech. engrg., 46, 201-215, (1984) · Zbl 0525.73042
[4] Hughes, T.J.R.; Winget, J., Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis, Internat. J. numer. meths. engrg., 15, (1980) · Zbl 0463.73081
[5] Pinsky, P.M.; Ortiz, M.; Pister, K.S., Numerical integration of rate constitutive equations in finite deformation analysis, Comput. meths. appl. mech. engrg., 40, 137-150, (1983) · Zbl 0504.73057
[6] Rubinstein, R.; Atluri, S.N., Objectivity of incremental constitutive relations over finite time steps in computational finite deformation analyses, Comput. meths. appl. mech. engrg., 36, 277-290, (1983) · Zbl 0486.73081
[7] Wilkins, M.L., Calculation of elastic-plastic flow, ()
[8] Krieg, R.D.; Key, S.W., Implementation of a time dependent plasticity theory into structural computer programs, () · Zbl 0471.73077
[9] Krieg, R.D.; Krieg, D.B., Accuracies of numerical solution methods for the elastic-perfectly plastic model, J. pressure vessel tech., ASME, 99, (1977)
[10] Schreyer, H.L.; Kulak, R.L.; Kramer, J.M., Accurate numerical solutions for elastic-plastic models, J. pressure vessel tech., ASME, 101, (1979)
[11] Rice, J.R.; Trace, D.M., Computational fracture mechanics, ()
[12] Nagtegaal, J.C., On the implementation of inelastic constitutive equations with special reference to large deformation problems, Comput. meths. appl. mech. engrg., 33, 469-484, (1982) · Zbl 0492.73077
[13] Lee, E.H., Elastic-plastic deformation at finite strains, J. appl. mech., 36, (1969) · Zbl 0179.55603
[14] Lee, E.H.; Liu, D.T., Finite strain elastic-plastic theory particularly for plane wave analysis, J. appl. phys., 38, (1967)
[15] J.C. Simo, A note on finite deformation anisotropic plasticity, to appear.
[16] Kroner, E.; Teodosiu, C., Lattice defect approach to plasticity and viscoplasticity, ()
[17] Green, A.E.; Naghdi, P.M., A general theory of an elastic-plastic continuum, Arch. rat. mech. anal., 18, (1965) · Zbl 0133.17701
[18] Green, A.E.; Naghdi, P.M., A thermodynamic development of elastic-plastic continua, () · Zbl 0179.55601
[19] Naghdi, P.M.; Trapp, J.A., Restrictions on constitutive equations for finitely deformed elastic-plastic materials, Quart. J. mech. appl. math., XXVIII, 1, (1975) · Zbl 0318.73002
[20] McMeeking, R.M.; Rice, J.R., Finite element formulation for problems of large elastic-plastic deformation, Internat. J. solids structures, 11, (1975) · Zbl 0303.73062
[21] Nagtegaal, J.C.; DeJong, J.E., Some computational aspects of elastic-plastic large strain analysis, Internat. J. numer. meths. engrg., 17, (1981) · Zbl 0463.73080
[22] Key, S.W.; Stone, C.M.; Krieg, R.D., Dynamic relaxation applied to the quasi-static, large deformation, inelastic response of axisymmetric solids, () · Zbl 0471.73077
[23] Hallquist, J.O., NIKE2D: an implicit, finite deformation, finite element code for analyzing the static and dynamic response of two dimensional solids, () · Zbl 0319.70015
[24] Key, S.W.; Biffle, J.H.; Krieg, R.D., A study of the computational and theoretical differences of two finite strain elastic-plastic constitutive models, ()
[25] Simo, J.C.; Marsden, J.E., Stress tensors, Riemannian metrics and alternative representations of elasticity, () · Zbl 0557.73003
[26] Simo, J.C.; Marsden, J.E., On the rotated stress tensor and the material version of the doyle-ericksen formula, Arch. rat. mech. anal., 86, 3, 213-231, (1984) · Zbl 0567.73003
[27] Green, A.E.; Naghdi, P.M., Some remarks on elastic-plastic deformation at finite strain, Internat. J. engrg. sci., 9, (1971) · Zbl 0226.73022
[28] Nemat-Nasser, S., On finite deformation elasto-plasticity, Internat. J. solids structures, 18, (1982) · Zbl 0508.73030
[29] Marsden, J.E., Lectures on geometric methods in mathematical physics, (1981), SIAM Philadelphia, PA · Zbl 0485.70001
[30] Doyle, T.C.; Ericksen, J.L., Nonlinear elasticity, ()
[31] Marsden, J.E.; Hughes, T.J.R., Mathematical foundations of elasticity, (1983), Prentice-Hall Englewood Cliffs, NJ · Zbl 0545.73031
[32] Mandel, J., Thermodynamics and plasticity, ()
[33] Mandel, J., Equations constitutives et directeurs dans LES mileux plastiques et viscoplastiques, Internat. J. solids structures, 9, (1973) · Zbl 0255.73004
[34] Kratochvil, J., On a finite strain theory of elastic-inelastic materials, Acta mech., 16, 127-142, (1973) · Zbl 0254.73034
[35] Simo, J.C.; Taylor, R.L., Penalty function formulations for incompressible non-linear elastostatics, Comput. meths. appl. mech. engrg., 35, 1983, 107-118, (1982) · Zbl 0478.73013
[36] Ortiz, M., Topics in constitutive theory for inelastic solids, ()
[37] Simo, J.C.; Taylor, R.L., Consistent tangent operators for rate independent elasto-plasticity, Comput. meths. appl. mech. engrg., 48, 101-118, (1985) · Zbl 0535.73025
[38] Simo, J.C.; Taylor, R.L.; Pister, K.S., Rate independent finite deformation plasticity, Computational issues, paper presented at FENOMECH-84, (1984) · Zbl 0525.73042
[39] Luenberger, D.G., Linear and nonlinear programming, (1984), Addison-Wesley Reading, MA · Zbl 0241.90052
[40] Nagtegaal, J.C.; Parks, D.M.; Rice, J.R., On numerically accurate finite element solutions in the fully plastic range, Comput. meths. appl. mech. engrg., 4, 153-178, (1974) · Zbl 0284.73048
[41] Hughes, T.J.R., Numerical implementation of constitutive models: rate independent deviatoric plasticity, ()
[42] Argyris, J.H.; Kleiber, M., Incremental formulation in nonlinear mechanics and large strain elasto-plasticity —natural approach-part I, Comput. meths. appl. mech. engrg., 11, 215-247, (1977) · Zbl 0384.73053
[43] Argyris, J.H.; Doltsinis, J.St.; Kleiber, M., Incremental formulation in nonlinear mechanics and large strain elasto-plasticity — natural approach — part II, Comput. meths. appl. mech. engrg., 14, 259-294, (1978) · Zbl 0389.73076
[44] Argyris, J.H.; Doltsinis, J.St., On the large strain inelastic analysis in natural formulation — part I. quasistatic problems, Comput. meths. appl. mech. engrg., 20, 213-251, (1979) · Zbl 0437.73065
[45] Argyris, J.H.; Doltsinis, J.St., On the large strain inelastic analysis in natural formulation. part II, Dynamic problems, comput. meths. appl. mech. engrg., 21, 91-126, (1980) · Zbl 0437.73067
[46] Argyris, J.H.; Doltsinis, J.St.; Pimenta, P.M.; Wüstenberg, H., Thermomechanical response of solids at high strains — natural approach, Comput. meths. appl. mech. engrg., 32, 3-57, (1982) · Zbl 0505.73062
[47] Kleiber, M., Kinematics of deformation processes in materials subjected to finite elastoplastic strains, Internat. J. engrg. sci., 13, 513-525, (1975) · Zbl 0304.73004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.