×

zbMATH — the first resource for mathematics

Lower stationary points and evolution equations with non-convex unilateral bounds. (Italian) Zbl 0567.35005
Stationary points of a function are studied giving some results under nonclassical assumptions; the evolution problem is also studied. The abstract results are applied to heat type equations and to the problem of geodesic with obstacle.
Reviewer: M.Biroli

MSC:
35A15 Variational methods applied to PDEs
35G10 Initial value problems for linear higher-order PDEs
35K25 Higher-order parabolic equations
35J60 Nonlinear elliptic equations
47J05 Equations involving nonlinear operators (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ambrosetti A., Sbordone C.,{\(\Gamma\)}-convergenza e G-convergenza per problemi non lineari di tipo ellittico. Boll. U.M.I. (5) 13-A (1976).
[2] Alt H. W., Caffarelli L. A.,Existence and regularity for a minimum problem with free boundary. J. Für die Mathematik 325 (1981) 105–144. · Zbl 0449.35105
[3] Aubin J. P.,Mathematical methods of game and economic theory. North Holland 1979. · Zbl 0452.90093
[4] Berger M. S.,Nonlinearity and functional analysis. Academic press 1977. · Zbl 0368.47001
[5] Berger M. S., Fife P. C.,Von Karman’s equations and the Buckling of a Thin Elastic Plate. Comm. on pure and app. math. 21 (1968) 227–241. · Zbl 0162.56501
[6] Brezis H.,Operateurs maximaux monotones. Notes de mathematica (50). North Holland 1973.
[7] De Giorgi E., Marino A., Tosques M.,Problemi di evoluzione in spazi metrici e curve di massima pendenza. Atti Acc. Naz. Lincei vol. 68 (1980). · Zbl 0465.47041
[8] De Giorgi E., Marino A., Tosques M.,Funzioni (p-q) convesse. Atti Acc. Naz. Lincei vol. 73 (1982).
[9] De Giorgi E., Degiovanni M., Tosques M., Relazione convegno Napoli. 1982.
[10] Kinderlehrer D., Stampacchia G.,An introduction to variational inequalities and their applications. Academic Press. 1980. · Zbl 0457.35001
[11] Lazzeri F.,Singolarità di applicazioni differenziabili su spazi di Banach. Di prossima pubblicazione.
[12] Marino A., Scolozzi D.,Geodetiche con ostacolo. Boll. U.M.I. (6) 2-B (1983). · Zbl 0563.53034
[13] Marino A., Tosques M.,Curves of maximal slope for a certain class of non regular functions. Boll. U.M.I. (6) 1-B (1982). · Zbl 0495.58012
[14] Milnor J.,Morse Theory. Princeton University Press, Princeton, New Jersey 1963.
[15] Morse M.,The calculus of variations in the large. Colloquium 18. 1934. · Zbl 0011.02802
[16] Nato advanced study institute,Generalized concavity in optimization and economics. Vancouver Canada 1980.
[17] Palais R.,Morse theory on Hilbert manifolds. Topology vol. 2. (1963). · Zbl 0122.10702
[18] Palais R.,Lusternik-Schnirelmann theory on Banach manifolds. Topology vol. 5. (1966). · Zbl 0143.35203
[19] Rabinowitz P. H.,Variational methods for nonlinear eigenvalue problems. Indiana Univ. Math. Journal 23, n. 8 (1974). · Zbl 0278.35040
[20] Riddel R. C.,Eigenvalue problems for nonlinear variational inequalities on a cone. Journal of Functional Analysis 26 (1977).
[21] Scwhartz J.,Nonlinear functional analysis. Gordon and Breach New York 1969.
[22] Serre J. P.,Homologie singulière des espaces fibrés. Annals of Mathematics 54, n. 3 (1951). · Zbl 0045.26003
[23] Vainberg M. M.,Variational methods for the study of nonlinear operators. Holden Day, San Francisco (1964).
[24] Wolfe P.,Methods of nonlinear programming in “Non linear programming{”. J. Abadie (Ed.) North Holland, 1967, p. 103.} · Zbl 0178.22802
[25] Magenes E.,Problemi di Stefan Bifase in più variabili spaziali. Preprint Istituto di Analisi Numerica del C.N.R. Pavia.
[26] De Giorgi E., Degiovanni M., Marino A., Tosques M.,Evolution equations for a class of nonlinear operators. Atti Acc. Naz. Lincei vol. 75 (1983). · Zbl 0597.47045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.