Interpolation spaces between domains of elliptic operators and spaces of continuous functions with applications to nonlinear parabolic equations. (English) Zbl 0568.47035

Let X be a Banach space and let \(A: D(A)\subset X\to X\) be a generator of a semigroup \(e^{tA}\) in X. For \(0<\theta <1\), the interpolation spaces \(D_ A(\theta,\infty)\) and \(D_ A(\theta)\) are defined by \[ D_ A(\theta,\infty)=\{x\in X;\quad \sup_{0<t<1}\| t^{- \theta}(e^{tA}x-x)\|_ X<+\infty \} \]
\[ D_ A(\theta)=\{x\in X;\quad \lim_{t\to 0^+}t^{-\theta}(e^{tA}x-x)=0\}. \] Here \(D_ A(\theta,\infty)\) and \(D_ A(\theta)\) are characterized when A is a second order elliptic differential operator with regular coefficients in \({\bar \Omega}\) and \(X=C_ 0({\bar \Omega})=\{f\in C({\bar \Omega});\quad f_{| \partial \Omega}=0\}\) (\(\Omega\) is a bounded open set in \({\mathbb{R}}^ n\) with regular boundary \(\partial \Omega)\). The result is \[ D_ A(\theta,\infty)=C_ 0^{2\theta}({\bar \Omega})=\{f\in C^{2\theta}({\bar \Omega});\quad f_{| \partial \Omega}=0\} \]
\[ D_ A(\theta)=h_ 0^{2\theta}({\bar \Omega})=\{f\in h^{2\theta}({\bar \Omega});\quad f_{| \partial \Omega}=0\} \] for each \(\theta\in]0,1[\) with \(\theta\) \(\neq 1/2\). \(h^{2\theta}({\bar \Omega})\) is the closure of \(C^{\infty}({\bar \Omega})\) in the norm of \(C^{2\theta}({\bar \Omega}).\)
These characterizations are used to prove that each second order elliptic operator with reular coefficients and Dirichlet boundary condition generates an analytic semigroup in \(C_ 0^{\alpha}({\bar \Omega})\) and in \(h_ 0^{\alpha}({\bar \Omega})\), \(0<\alpha <1.\)
Moreover, the above results are applied in order to study fully nonlinear second order parabolic p.d.e. in spaces of continuous functions.


47D03 Groups and semigroups of linear operators
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
47F05 General theory of partial differential operators
46M35 Abstract interpolation of topological vector spaces
35K55 Nonlinear parabolic equations
Full Text: DOI


[1] , Some existence and regularity results of abstract non autonomous parabolic equations, preprint
[2] Ardito, Nonlinear Analysis 4 pp 411– (1980)
[3] Baillon, C. R. Acad. Sc. Paris 290 pp 757– (1980)
[4] Campanato, Ann. Scuola Norm. Sup. IV pp 495– (1981)
[5] Da Prato, C; R. Acad. Sc. Paris 283 pp 709– (1976)
[6] Da Prato, Ann. Mat; Pura Appl. (IV) pp 329– (1979)
[7] Da Prato, Isr. J. Math. 42 pp 1– (1982)
[8] Hayden, Pac. J. Math. 57 pp 423– (1975) · Zbl 0294.47043
[9] Komatsu, J. Fac. Sci. Tokyo 19 pp 1– (1961)
[10] Lions, Ann. Scuola Norm. Sup. Pisa 13 pp 389– (1959)
[11] , Sur une class d’espaces d’interpolation, Publ. I.H.E.S. Paris (1964) 5–68 · Zbl 0148.11403
[12] Lunardi, Nonlinear Analysis 6 pp 503– (1982)
[13] Lunardi, Acc. Naz. Lincei 52 (1982)
[14] Massey, J. Diff. Eq. 22 pp 416– (1976)
[15] Elliptic partial differential equations, Springer Verlag, Berlin 1970
[16] Semigroups of linear operators and applications to partial differential equations, Lecture Notes, University of Maryland, 1977
[17] Sinestrari, J. Int. Eq.
[18] On the solution of the inhomogeneous evolution equation in Banach spaces; Abstract semilinear equations in Banach spaces, Rend. Acc. Naz. Lincei LXX (1981)
[19] Singular integrals and differentiability properties of functions, Princeton 1970 · Zbl 0207.13501
[20] Stewart, Trans. Am. Math. Soc. 199 pp 141– (1974)
[21] Equations of evolution, Pitman, London 1979
[22] Travis, Proc. Am. Math. Soc. 82 pp 425– (1981)
[23] Interpolation theory, function spaces, differential operators, North-Holland, Amsterdam 1978
[24] von Wahl, Nachr. Acad. Wiss. Göttingen Math. Phis. Kl. 11 pp 231– (1972)
[25] von Wahl, Manuscripta Math. 11 pp 199– (1974)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.