×

The dissipative structure of variational multiscale methods for incompressible flows. (English) Zbl 1406.76034

Summary: We present a precise definition of the numerical dissipation for the orthogonal projection version of the variational multiscale method for incompressible flows. We show that, only if the space of subscales is taken orthogonal to the finite element space, this definition is physically reasonable as the coarse and fine scales are properly separated. Then we compare the diffusion introduced by the numerical discretization of the problem with the diffusion introduced by a large eddy simulation model. Results for the flow around a surface-mounted obstacle problem show that numerical dissipation is of the same order as the subgrid dissipation introduced by the Smagorinsky model. Finally, when transient subscales are considered, the model is able to predict backscatter, something that is only possible when dynamic LES closures are used. Numerical evidence supporting this point is also presented.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76M10 Finite element methods applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] Abdalla, I.E.; Cook, M.J.; Yang, Z., Numerical study of transitional separated-reattached flow over surface-mounted obstacles using large-eddy simulation, Int. J. numer. methods fluids, 54, 2, 175-206, (2007) · Zbl 1247.76039
[2] Bazilevs, Y.; Calo, V.M.; Cottrell, J.A.; Hughes, T.J.R.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. method. appl. mech. engrg., 197, 1-4, 173-201, (2007) · Zbl 1169.76352
[3] Boris, J.P.; Grinstein, F.F.; Oran, E.S.; Kolbe, R.L., New insights into large eddy simulation, Fluid dyn. res., 10, 199, (1992)
[4] Burman, E., Interior penalty variational multiscale method for the incompressible navier – stokes equation: monitoring artificial dissipation, Comput. method. appl. mech. engrg., 196, 41-44, 4045-4058, (2007) · Zbl 1173.76332
[5] V.M. Calo, Residual based multiscale turbulence modeling: finite volume simulations of bypass transition, PhD Thesis, Department of Civil and Environmental Engineering, Stanford University, 2004.
[6] Codina, R., A stabilized finite element method for generalized stationary incompressible flows, Comput. method. appl. mech. engrg., 190, 20-21, 2681-2706, (2001) · Zbl 0996.76045
[7] Codina, R., Stabilized finite element approximation of transient incompressible flows using orthogonal subscales, Comput. method. appl. mech. engrg., 191, 39-40, 4295-4321, (2002) · Zbl 1015.76045
[8] Codina, R.; González-Ondina, J.M.; Díaz Hernández, G.; Principe, J., Finite element approximation of the modified Boussinesq equations using a stabilized formulation, Int. J. numer. meth. fl., 57, 9, 1249-1268, (2008) · Zbl 1140.76016
[9] Codina, R.; Principe, J.; Guasch, O.; Badia, S., Time dependent subscales in the stabilized finite element approximation of incompressible flow problems, Comput. method. appl. mech. engrg., 196, 21-24, 2413-2430, (2007) · Zbl 1173.76335
[10] Domaradzki, J.A.; Xiao, Z.; Smolarkiewicz, P.K., Effective eddy viscosities in implicit large eddy simulations of turbulent flows, Phys. fluids, 15, 12, 3890-3893, (2003) · Zbl 1186.76146
[11] Garnier, E.; Mossi, M.; Sagaut, P.; Comte, P.; Deville, M., On the use of shock-capturing schemes for large-eddy simulation, J. comput. phys., 153, 2, 273-311, (1999) · Zbl 0949.76042
[12] Ghosal, S., An analysis of numerical errors in large-eddy simulations of turbulence, J. comput. phys., 125, 1, 187-206, (1996) · Zbl 0848.76043
[13] O. Guasch, R. Codina, A heuristic argument for the sole use of numerical stabilization with no physical LES modelling in the simulation of incompressible turbulent flows, J. Comput. Phys., submitted for publication. · Zbl 1286.76066
[14] Hoffman, J.; Johnson, C., A new approach to computational turbulence modeling, Comput. method. appl. mech. engrg., 195, 2865-2880, (2006) · Zbl 1176.76065
[15] Hughes, T.J.R.; Engel, G.; Mazzei, L.; Larson, M.G., The continuous Galerkin method is locally conservative, J. comput. phys., 163, 2, 467-488, (2000) · Zbl 0969.65104
[16] Hughes, T.J.R.; Franca, L.P.; Scovazzi, G., Multiscale and stabilized methods, Encyclopedia comput. mech., 3, (2004)
[17] Hughes, T.J.R.; Mazzei, L.; Oberai, A.A., The multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence, Phys. fluids, 13, 2, 505-512, (2001) · Zbl 1184.76236
[18] Hughes, T.J.R.; Oberai, A.A.; Mazzei, L., Large eddy simulation of turbulent channel flows by the variational multiscale method, Phys. fluids, 13, 6, 1784-1799, (2001) · Zbl 1184.76237
[19] T.J.R. Hughes, V.M. Calo, G. Scovazzi, Variational and multiscale methods in turbulence, in: W. Gutkowski, T.A. Kowalewski (Eds.), Proceedings of the XXI International Congress of Theoretical and Applied Mechanics (IUTAM), Kluwer, 2004.
[20] Hughes, T.J.R.; Feijóo, G.R.; Mazzei, L.; Quincy, J.B., The variational multiscale method – a paradigm for computational mechanics, Comput. method. appl. mech. engrg., 166, 3-24, (1998) · Zbl 1017.65525
[21] Kravchenko, A.G.; Moin, P., On the effect of numerical errors in large eddy simulations of turbulent flows, J. comput. phys., 131, 2, 310-322, (1997) · Zbl 0872.76074
[22] Le, H.; Moin, P.; Kim, J., Direct numerical simulation of turbulent flow over a backward-facing step, J. fluid mech., 374, 330-349, (1997) · Zbl 0900.76367
[23] Levasseur, V.; Sagaut, P.; Chalot, F.; Davroux, A., An entropy-variable-based VMS/GLS method for the simulation of compressible flows on unstructured grids, Comput. method. appl. mech. engrg., 195, 9-12, 1154-1179, (2006) · Zbl 1115.76050
[24] D.K. Lilly, The representation of small-scale turbulence theory in numerical simulation experiments, in: H.H. Goldstine (Ed.), Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences, 1967.
[25] Orellano, A.; Wengle, H., Numerical simulation (dns and LES) of manipulated turbulent boundary layer flow over a surface-mounted fence, Eur. J. mech. B-fluid., 19, 5, 765-788, (2000) · Zbl 1005.76048
[26] Sagaut, P., Large eddy simulation for incompressible flows, Scientific computing, (2001), Springer
[27] Sampaio, P.A.B.; Hallak, P.H.; Coutinho, A.L.G.A.; Pfeil, M.S., A stabilized finite element procedure for turbulent fluid-structure interaction using adaptive time-space refinement, Int. J. numer. meth. fl., 44, 673-693, (2004) · Zbl 1085.76528
[28] Tejada-Martínez, A.E.; Jansen, K.E., On the interaction between dynamic model dissipation and numerical dissipation due to streamline upwind/Petrov-Galerkin stabilization, Comput. method. appl. mech. engrg., 194, 9-11, 1225-1248, (2005) · Zbl 1091.76027
[29] Yakhot, A.; Liu, H.; Nikitin, N., Turbulent flow around a wall-mounted cube: a direct numerical simulation, Int. J. heat fluid fl., 27, 6, 994-1009, (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.