×

zbMATH — the first resource for mathematics

Bayesian nonparametric quantile regression using splines. (English) Zbl 05689661
Summary: A new technique based on Bayesian quantile regression that models the dependence of a quantile of one variable on the values of another using a natural cubic spline is presented. Inference is based on the posterior density of the spline and an associated smoothing parameter and is performed by means of a Markov chain Monte Carlo algorithm. Examples of the application of the new technique to two real environmental data sets and to simulated data for which polynomial modelling is inappropriate are given. An aid for making a good choice of proposal density in the Metropolis-Hastings algorithm is discussed. The new nonparametric methodology provides more flexible modelling than the currently used Bayesian parametric quantile regression approach.

MSC:
62 Statistics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bédard, M., 2006. Optimal acceptance rates for Metropolis-Hastings algorithms: Moving beyond 0.234. Annals of Statistics (submitted for publication)
[2] Bédard, M., Efficient sampling using algorithms, Journal of computational and graphical statistics, 17, 2, 312-332, (2008)
[3] Bosch, R.; Ye, Y.; Woodworth, G.G., A convenient algorithm for quantile regression with smoothing splines, Computational statistics and data analysis, 19, 613-630, (1995) · Zbl 0875.62148
[4] Brooks, S.P.; Gelman, A., General methods for monitoring convergence of iterative simulations, Journal of computational and graphical statistics, 7, 4, 434-455, (1998)
[5] Denison, D.G.T.; Mallick, B.K.; Smith, A.F.M., Automatic Bayesian curve Fitting, Journal of the royal statistical society: series B, 60, 2, 333-350, (1998) · Zbl 0907.62031
[6] Dias, R.; Gamerman, D., A Bayesian approach to hybrid splines non-parametric regression, Journal of statistical computing and simulation, 72, 4, 285-297, (2002) · Zbl 0995.62040
[7] Doksum, K.; Koo, J., On spline estimators and prediction intervals in nonparametric regression, Computational statistics & data analysis, 35, 1, 67-82, (2000) · Zbl 1142.62340
[8] Dunson, D.B.; Taylor, J.A., Approximate Bayesian inference for quantiles, Nonparametric statistics, 17, 3, 385-400, (2005) · Zbl 1061.62051
[9] Gamerman, D., Markov chain Monte Carlo: stochastic simulation for Bayesian inference, (1997), Chapman and Hall London · Zbl 0881.62002
[10] Gelman, A., Inference and monitoring convergence, (), 131-143 · Zbl 0839.62020
[11] Gelman, A.; Rubin, D., Inference from iterative simulation using multiple sequences (with discussion), Statistical science, 7, 457-511, (1992) · Zbl 1386.65060
[12] Green, P.J., Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, 82, 711-732, (1995) · Zbl 0861.62023
[13] Green, P.J; Silverman, B.W., Nonparametric regression and generalized linear models, (1994), Chapman and Hall London · Zbl 0832.62032
[14] Hastie, T.; Tibshirani, R.; Friedman, J., The elements of statistical learning: data mining, inference, and prediction, (2001), Springer New York · Zbl 0973.62007
[15] Kass, R.E.; Calin, B.P.; Gelman, A.; Neal, R.M., MCMC in practice: A roundtable discussion, The American Statistician: statistical practice, 52, 2, 93-100, (1998)
[16] Koenker, R., Quantile regression, (2005), Cambridge University Press Cambridge · Zbl 1111.62037
[17] Koenker, R.; Ng, P.; Portnoy, S., Quantile smoothing splines, Biometrika, 81, 4, 673-680, (1994) · Zbl 0810.62040
[18] Koenker, R., 2008. quantreg: Quantile Regression (version 4.17). Vienna, Austria. http://www.r-project.org
[19] Kottas, A.; Gelfand, A.E., Bayesian semiparametric Median regression modeling, Journal of the American statistical association, 96, 456, 1458-1468, (2001) · Zbl 1051.62038
[20] Kottas, A.; Krnjajić, M., Bayesian semiparametric modelling in quantile regression, Scandinavian journal of statistics, 36, 297-319, (2009) · Zbl 1190.62053
[21] Laurini, F.; Pauli, F., Smoothing sample extremes: the mixed model approach, Computational statistics & data analysis, 53, 11, 3842-3854, (2009) · Zbl 05689140
[22] Lejeune, M.G.; Sarda, P., Quantile regression: A nonparametric approach, Computational statistics & data analysis, 6, 3, 229-239, (1988) · Zbl 0726.62057
[23] Neal, R.M., Slice sampling, Annals of statistics, 31, 3, 705-767, (2003) · Zbl 1051.65007
[24] Ng, P., An algorithm for quantile smoothing splines, Computational statistics & data analysis, 22, 2, 99-118, (1996) · Zbl 0900.62197
[25] R Development Core Team,, 2009. R: A language and environment for statistical computing. Vienna, Austria. ISBN: 3-900051-07-0. http://www.R-project.org
[26] Rao, R.C., Linear statistical inference and its applications, (2002), John Wiley & Sons New York
[27] Reeve, D.; Chadwick, A.; Fleming, C., Coastal engineering: processes, theory and design practice, (2004), SPON London
[28] Silverman, B.W., Some aspects of the spline smoothing approach to nonparametric curve Fitting, Journal of the royal statistical society: series B, 47, 1-52, (1985) · Zbl 0606.62038
[29] Thompson, P., Reeve, D., Cai, Y., Stander, J., Moyeed, R., 2008. Bayesian nonparametric quantile regression using splines for modelling wave heights. In: FloodRisk 2008 Conference. Keble College, University of Oxford, UK · Zbl 05689661
[30] Venables, W.N.; Ripley, B.D., Modern applied statistics with S, (2002), Springer-Verlag New York · Zbl 1006.62003
[31] Wang, Y.; Shao, Q.; Zhu, M., Quantile regression without the curse of unsmoothness, Computational statistics & data analysis, 53, 10, 3696-3705, (2009) · Zbl 05689126
[32] Yu, K.; Moyeed, R., Bayesian quantile regression, Statistics and probability letters, 54, 437-447, (2001) · Zbl 0983.62017
[33] Yu, K.; Lu, Z.; Stander, J., Quantile regression: application and current research areas, Journal of the royal statistical society: the Statistician, 52, 3, 331-350, (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.