zbMATH — the first resource for mathematics

Ranking fuzzy numbers in the setting of possibility theory. (English) Zbl 0569.94031
The arithmetic manipulation of fuzzy numbers or fuzzy intervals is now well understood. Equally important for application purposes is the problem of ranking fuzzy numbers or fuzzy intervals, which is addressed in this paper. A complete set of comparison indices is proposed in the framework of Zadeh’s possibility theory. It is shown that generally four indices enable one to completely describe the respective locations of two fuzzy numbers. Moreover, this approach is related to previous ones, and its possible extension to the ranking of n fuzzy numbers is discussed at length. Finally, it is shown that all the information necessary and sufficient to characterize the respective locations of two fuzzy numbers can be recovered from the knowledge of their mutual compatibilities.

94D05 Fuzzy sets and logic (in connection with information, communication, or circuits theory)
91B06 Decision theory
Full Text: DOI
[1] Baas, S.M.; Kwakernaak, H., Rating and ranking of multiple aspect alternatives using fuzzy sets, Automatica, 13, 1, 47-58, (1977) · Zbl 0363.90010
[2] Baldwin, J.F.; Guild, N.C.F., Comments on the fuzzy MAX operator of DuBois and prade, Internat. J. systems sci., 10, 9, 1063-1064, (1979) · Zbl 0406.94023
[3] Baldwin, J.F.; Guild, N.C.F., Comparison of fuzzy sets on the same decision space, Fuzzy sets and systems, 2, 3, 213-233, (1979) · Zbl 0422.90004
[4] Blin, J.M., Fuzzy relations in group decision theory, J. cybernetics, 4, 2, 17-22, (1974) · Zbl 0363.90011
[5] Cayrol, M.; Farreny, H.; Prade, H., Possibility and necessity in a pattern matching process, (), 53-65
[6] Dubois, D., An application of fuzzy sets to bus transportation network modification, (), 53-60
[7] Dubois, D.; Prade, H., Comment on tolerance analysis using fuzzy sets “and” a procedure for multiple aspect decision making, Internat. J. systems sci., 9, 357-360, (1978) · Zbl 0374.94001
[8] Dubois, D.; Prade, H., Operations on fuzzy numbers, Internat. J. systems sci., 9, 613-626, (1978) · Zbl 0383.94045
[9] Dubois, D.; Prade, H., Decision-making under fuzziness, (), 279-303
[10] Dubois, D.; Prade, H., Fuzzy real algebra: some results, Fuzzy sets and systems, 2, 4, 327-348, (1979) · Zbl 0412.03035
[11] Dubois, D.; Prade, H., Fuzzy sets and systems: theory of applications, (1980), Academic New York
[12] Dubois, D.; Prade, H., Additions of interactive fuzzy numbers, IEEE trans. automat. control, 26, 4, 926-936, (1981)
[13] D. Dubois and H. Prade, A unifing view of comparison indices in a fuzzy set theoretic framework, in Recent Progress in Fuzzy Set and Possibility Theory (R. R. Yager, Ed.), Pergamon, to appear.
[14] Dubois, D.; Prade, H., Fuzzily-bounded domains: A topological-like point of view, (), 191-209
[15] D. Dubois and H. Prade, The use of fuzzy numbers in decision analysis, in Fuzzy Information and Decision Processes (M. M. Gupta and E. Sanchez, Eds.), to appear. · Zbl 0507.90006
[16] Freeling, A.N.S., Fuzzy sets and decision analysis, IEEE trans. systems, man cybernet., 10, 341-354, (1980)
[17] Jain, R., A procedure for multiple aspect decision making, Internat. J. systems sci., 8, 1-7, (1977) · Zbl 0347.90001
[18] Lowen, R., Convex fuzzy sets, Fuzzy sets and systems, 3, 291-310, (1980) · Zbl 0439.52001
[19] Mizumoto, M.; Tanaka, K., Some properties of fuzzy numbers, (), 153-164
[20] Mizumoto, M.; Tanaka, K., The four operations of arithmetic on fuzzy numbers, Systems comput.-controls, 7, 5, 73-81, (1976)
[21] Nahmias, S., Fuzzy variables, Fuzzy sets and systems, 1, 97-110, (1978) · Zbl 0383.03038
[22] Orlowski, S.A., Decision-making with a fuzzy preference relation, Fuzzy sets and systems, 1, 155-167, (1978) · Zbl 0396.90004
[23] H. Prade, Modal semantics and fuzzy set theory, in Recent Advances in fuzzy Set and Possibility Theory (R. R. Yager, Ed.), Pergamon, to appear.
[24] Rizzi, D., Une méthode pour évaluer et comparer en avenir incertain. application ă l’étude de la rentabilité des ateliers flexibles, ()
[25] Roy, B., \scelectre iii: un algorithme de classement fondé sur une représentation floue des préférences en présence de critères multiples, Cahiers centre études rech. opér., 20, 1, 3-24, (1978) · Zbl 0377.90003
[26] Shafer, G., A mathematical theory of evidence, (1976), Princeton U.P Princeton, N.J · Zbl 0359.62002
[27] Shimura, M., Fuzzy set concepts in the rank-ordering of objects, J. math. anal. appl., 43, 717-733, (1973) · Zbl 0272.68063
[28] Tong, R.M.; Bonissone, P.P., A linguistic approach to decision making with fuzzy sets, IEEE trans. systems man cybernet., 10, 716-723, (1980)
[29] Tsukamoto, Y.; Nikoforuk, P.N.; Gupta, M.M., On the comparison of fuzzy sets using fuzzy chopping, (), 46-52
[30] Watson, S.R.; Weiss, J.J.; Donnell, M.L., Fuzzy decision analysis, IEEE trans. systems man cybernet., 9, 1-9, (1979)
[31] Willmott, R., Mean measures of containment and equality between fuzzy sets, (), 183-190
[32] Yager, R.R., On choosing between fuzzy subsets, Kybernetes, 9, 151-154, (1980) · Zbl 0428.03050
[33] Zadeh, L.A., Similarity relations and fuzzy orderings, Inform. sci., 3, 177-200, (1971) · Zbl 0218.02058
[34] Zadeh, L.A., Fuzzy sets as a basis for a theory of possibility, Fuzzy sets and systems, 1, 3-28, (1978) · Zbl 0377.04002
[35] Zadeh, L.A., A theory of approximate reasoning, (), 149-194
[36] Zadeh, L.A., Fuzzy sets and information granularity, (), 3-18 · Zbl 0377.04002
[37] Zadeh, L.A., Test-score semantics for natural languages and meaning representation via pruf, () · Zbl 0406.68063
[38] Zadeh, L.A., Fuzzy probabilities and decision analysis, () · Zbl 0532.90003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.