zbMATH — the first resource for mathematics

A note on measures of specificity for fuzzy sets. (English) Zbl 0569.94032
This is the same paper as in BUSEFAL 19, 83-89 (1984; Zbl 0555.94028). In a previous paper [Fuzzy Sets Syst. 10, 15-20 (1983; Zbl 0515.60005)], the authors pointed out a one-to-one correspondence between a probability distribution and a possibility distribution on finite domains. Thus a probabilistic interpretation of R. R. Yager’s specificity index [Fuzzy Set Theory, Proc. 3rd Int. Semin., Linz/Austria 1981, 212-222 (1981; Zbl 0481.94026)] of a possibility distribution is provided in the finite case. In probabilistic terms, the possibilistic entropy of M. Higashi and G. J. Klir [Int. J. Gen. Syst. 9, 43-58 (1982; Zbl 0497.94008)] is also obtained.
Reviewer: S.Sessa

94D05 Fuzzy sets and logic (in connection with information, communication, or circuits theory)
94A17 Measures of information, entropy
Full Text: DOI
[1] De Luca A., Information and Control 20 pp 301– (1972) · Zbl 0239.94028 · doi:10.1016/S0019-9958(72)90199-4
[2] Dubois D., Fuzzy Sets and Systems 10 pp 15– (1983) · Zbl 0515.60005 · doi:10.1016/S0165-0114(83)80099-2
[3] Higashi M., Int. J. General Systems 9 pp 43– (1983) · Zbl 0497.94008 · doi:10.1080/03081078208960799
[4] Shafer G., A Mathematical Theory of Evidence (1976) · Zbl 0326.62009
[5] Yager R. R., Proc. 3rd Int. Seminar on Fuzzy Set Theory pp 211– (1981)
[6] Yager R. R., Human Systems Management 3 pp 246– (1983)
[7] Zadeh L. A., Fuzzy Sets & Systems 1 pp 3– (1978) · Zbl 0377.04002 · doi:10.1016/0165-0114(78)90029-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.