zbMATH — the first resource for mathematics

Canonical variables for the Dirac theory. (English) Zbl 0571.53059
A new canonical structure for Dirac’s theory is proposed. The new configuration space A is a real, four-dimensional subbundle of the spinor bundle. A Lagrangian defined on Q describes a theory equivalent to the Dirac one. In this way we obtain a theory without second-type constraints.

53C80 Applications of global differential geometry to the sciences
70G10 Generalized coordinates; event, impulse-energy, configuration, state, or phase space for problems in mechanics
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
Full Text: DOI
[1] Bialynicki-BirulaI. and Bialynicka-BirulaZ., Quantum Electrodynamics, Pergamon Press, London. PWN-Polish Scientific Publisher, Warsaw, 1975, pp. 230–241.
[2] CrumeyrolleA., Ann. Inst. H. Poincaré A11, 19 (1969).
[3] DiracP. A. M., Can. J. Math. 2, 129 (1950). · Zbl 0036.14104 · doi:10.4153/CJM-1950-012-1
[4] FerrarisM. and KijowskiJ., G.R.G. 14, 37 (1982).
[5] KasuyaM., Prog. Theor. Phys. 60, 167 (1978). · Zbl 1098.83510 · doi:10.1143/PTP.60.167
[6] KibbleT. W., J. Math. Phys. 4, 1433 (1963). · Zbl 0118.43704 · doi:10.1063/1.1703923
[7] KijowskiJ. and TulczyjewW. M., A Symplectic Framework for Field Theories, Lecture Notes in Physics Vol. 107, Springer-Verlag, Berlin, 1979.
[8] MisnerCh. W., ThorneK. S., and WheelerJ. A., Gravitation, Freeman, San Francisco, 1973.
[9] SchwingerJ., Phys. Rev. 91, 713 (1953). · Zbl 0057.43401 · doi:10.1103/PhysRev.91.713
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.