zbMATH — the first resource for mathematics

Complete characterization of holomorphic chains of codimension one. (English) Zbl 0572.32005
The main result is the following characterization of holomorphic chains of codimension 1: If T is a closed, locally rectifiable (1,1)-current on a domain in \({\mathbb{C}}^ n\), then T is a holomorphic chain. As a consequence, it is proved that if T is a closed, locally rectifiable current of bidimension (p,p) such that the Hausdorff \((2p+3)\)-measure of Supp T vanishes, then T is a holomorphic chain. This gives an improvement of the characterization theorem of R. Harvey and the author [Ann. Math., II. Ser. 99, 553-587 (1974; Zbl 0287.32008)]. The proof uses the following new Hartogs-type theorem on almost-everywhere separately meromorphic functions: Let \(\Delta^ n\) denote the unit n-disk in \({\mathbb{C}}^ n\). Suppose \(f: S\to {\mathbb{C}}\) where \(S\subset \Delta^ n\). Write \(f^ z_ j(t)=f(z_ 1,...,z_{j-1},t,z_ j,...,z_{n-1})\) for \(z=(z_ 1,...,z_{n-1})\in \Delta^{n-1}\), \(1\leq j\leq n\), and let \(S^ z_ j\subset \Delta\) denote the domain of \(f^ z_ j\). Suppose that for \(1\leq j\leq n\) and for almost all \(z\in \Delta^{n-1}\), \(\Delta -S^ z_ j\) has Lebesgue measure 0 and \(f^ z_ j\) extends to a meromorphic function on \(\Delta\). Then there exists a meromorphic function \(\tilde f\) on \(\Delta^ n\) such that \(f=\tilde f\) almost everywhere on S. In the above result, neither f nor S is assumed to be measurable. However, the following corollary for measurable functions is given: Let \(f: \Delta\) \({}^ n\to {\mathbb{C}}\) be a measurable function such that \(f^ z_ j\) is equal to a meromorphic function on \(\Delta\) for almost all \(z\in \Delta^{n-1}\), for \(1\leq j\leq n\). Then f is almost everywhere equal to a meromorphic function on \(\Delta^ n\). These results are extensions of results of J. Siciak [Ann. Pol. Math. 22, 145-171 (1969; Zbl 0185.152) and 39, 175-211 (1981; Zbl 0477.32018)] and M. V. Kazaryan [Mat. Sbornik 125(167), No.3, 384-397 (1984)].

32C30 Integration on analytic sets and spaces, currents
32D15 Continuation of analytic objects in several complex variables
Full Text: DOI EuDML
[1] Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math.149, 1-40 (1982) · Zbl 0547.32012
[2] Bernstein, S.: Sur l’ordre de la meilleure approximation des fonctions continues par des polynomes de degré donné. Acad. Roy. Belg. Cl. Sci. Mém.4, 1912 (1922) · JFM 45.0633.03
[3] Cegrell, U.: Some characterizations ofL-regular points. Monatsh. Math.89, 289-292 (1980) · Zbl 0429.32023
[4] Federer, H.: Geometric measure theory. New York: Springer 1969 · Zbl 0176.00801
[5] Hadamard, J.: Essar sur l’étude des fonctions données par leurs developpements de Taylor. J. Math. Pures Appl.8, 101-186 (1892) · JFM 24.0359.01
[6] Hartogs, F.: Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten. Math. Ann.62, 1-88 (1906) · JFM 37.0444.01
[7] Harvey, R.: Holomorphic chains and their boundaries. Proc. Symp. Pure Math.30, 309-382 (1977) · Zbl 0374.32002
[8] Harvey, R., Lawson, H.B.: On boundaries of complex analytic varieties, I, II. Ann. Math.102, 223-290 (1975);106, 213-238 (1977) · Zbl 0317.32017
[9] Harvey, R., Shiffman, B.: A characterization of holomorphic chains. Ann. Math.99, 553-587 (1974) · Zbl 0287.32008
[10] Josefson, B.: On the equivalence between locally polar and globally polar sets for plurisubharmonic functions onC n . Ark. Mat.16, 109-115 (1978) · Zbl 0383.31003
[11] King, J.: The currents defined by analytic varieties. Acta Math.127, 185-220 (1971) · Zbl 0224.32008
[12] Lelong, P.: Intégration sur un ensemble analytique complexe. Bull. Soc. Math. Fr.85, 239-262 (1957) · Zbl 0079.30901
[13] Levi, E.E.: Studii sui punti singolari essenziali delle funzioni analitiche di due o più variabili complesse. Ann. Mat. Pura Appl.17, 61-87 (1910) · JFM 41.0487.01
[14] Nguyen, T.V., Zeriahi, A.: Familles de polynômes presque partout bornées. Bull. Sci. Math.107, 81-91 (1983) · Zbl 0523.32011
[15] Rothstein, W.: Ein neuer Beweis des Hartogsschen Hauptsatzes und seine Ausdehnung auf meromorphe Funktionen. Math. Z.53, 84-95 (1950) · Zbl 0037.18301
[16] Shiffman, B.: On the removal of singularities of analytic sets. Mich. Math. J.15, 111-120 (1968) · Zbl 0165.40503
[17] Siciak, J.: Separately analytic functions and envelopes of holomorphy of some lower dimensional subsets ofC n . Ann. Pol. Math.22, 145-171 (1970) · Zbl 0185.15202
[18] Siciak, J.: Extremal plurisubharmonic functions inC n . Ann. Pol. Math.39, 175-211 (1981) · Zbl 0477.32018
[19] Siciak, J.: Extremal plurisubharmonic functions and capacities inC n . Sophia Kokyuroku in Mathematics14. Sophia University, Tokyo, 1982 · Zbl 0579.32025
[20] Terada, T.: Sur une certaine condition sous laquelle une fonction de plusieurs variables complexes est holomorphe. Publ. Res. Inst. Math. Sci. Ser. A2, 383-396 (1967) · Zbl 0183.34903
[21] Zaharjuta, V.P.: Separately analytic functions, generalizations of Hartogs’ theorem, and envelopes of holomorphy. Mat. Sb.101, 143 (1976) [Engl. transl.: Math. USSR Sb.30 51-67 (1976)]
[22] Kazaryan, M.V.: On functions of several complex variables that are separately meromorphic. Mat. Sb.99, 141 (1976) [Engl. transl.: Math. USSR Sb.28, 481-489 (1976)] · Zbl 0379.32005
[23] Kazaryan, M.V.: Meromorphic continuation with respect to groups of variables. Mat. Sb.125, 384-397 (1984)
[24] Uhlenbeck, K., Yau, S.T.: Personal communication from S. T. Yau
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.