×

A maximum-dissipation principle in generalized plasticity. (English) Zbl 0572.73043

Ausgangspunkt vorliegender Untersuchungen sind die Fließkriterien von Mises und Hill, die einen Zusammenhang zwischen dem plastischen Formänderungsgeschwindigkeitstensor, dem Tensor der wahren Spannung und einem beliebigen Spannungstensor darstellen, welcher nicht nur für sich verfestigende Werkstoffe Gültigkeit besitzt. Dabei wird eine obere Schranke für eine endliche Formänderung nach der verallgemeinerten Plastizitätstheorie formuliert. Lösungen werden unter Verwendung einer multiplikativen Zerlegung des Formänderungsgradienten vorgestellt.
Reviewer: H.Wolf

MSC:

74C99 Plastic materials, materials of stress-rate and internal-variable type
74R20 Anelastic fracture and damage
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Mandel, J.: Contribution théorique à l’étude de l’écrouissage et des lois de l’écoulement plastique. Proc. 11th Int. Congr. Appl. Mech., pp. 502-509 (1964).
[2] von Mises, R.: Mechanik der plastischen Formänderung von Kristallen. Z. angew. Math. Mech.8, 161-185 (1928). · JFM 54.0877.01
[3] Hill, R.: A variational principle of maximum plastic work in classical plasticity. Quart. J. Mech. Appl. Math.1, 18-28 (1948). · Zbl 0035.40902
[4] Hill, R.: The mathematical theory of plasticity. Oxford University Press 1956. · Zbl 0072.41601
[5] Mandel, J.: Plasticité classique et viscoplasticité (Udine 1971). Wien-New York: Springer 1972.
[6] Prager, W.: Introduction to plasticity. Addison-Wesley 1959. · Zbl 0089.42004
[7] Taylor, G. I.: A connection between the criterion of yield and the strain-ratio relationship in plastic solids. Proc. Roy. Soc.A191, 441-446 (1947).
[8] Koiter, W.: Stress-strain relations, uniqueness and variational theorems for elasticplastic materials with a singular yield surface. Quart. Appl. Math.11, 350-354 (1953). · Zbl 0053.14003
[9] Moreau, J. J.: Fonctionelles sous-différentiables. C. R. Acad. Sci. Paris257, 4117-4119 (1963). · Zbl 0137.31401
[10] Drucker, D. C.: A more fundamental approach to plastic stress-strain relations. Proc. 1st U.S. Nat. Congr. Appl. Mech., pp. 487-491 (1951).
[11] Nguyen, Q. S., Bui, H. D.: Sur les matériaux élastoplastiques à écrouissage positif ou négatif. J. de Méc.13, 321-342 (1974). · Zbl 0286.73034
[12] Ilyushin, A. A.: On a postulate of plasticity (in Russian). Prikl. Math. Mekh.18, 503-507 (1961).
[13] Eisenberg, M. A., Phillips, A.: A theory of plasticity with non-coincident yield and loading surfaces. Acta Mechanica11, 247-260 (1971). · Zbl 0225.73030
[14] Lubliner, J.: A simple theory of plasticity. Int. J. Solids Struct.10, 310-313 (1974). · Zbl 0288.73029
[15] Lubliner, J.: On loading, yield and quasi-yield hypersurfaces in plasticity theory. Int. J. Solids Struct.11, 1011-1016 (1975). · Zbl 0376.73036
[16] Lubliner, J.: An axiomatic model of rate-independent plasticity. Int. J. Solids Struct.16, 709-713 (1980). · Zbl 0459.73020
[17] Pipkin, A. C., Rivlin, R. S.: Mechanics of rate-independent materials. Z. angew. Math. Phys.16, 313-327 (1965).
[18] Owen, D. R.: Thermodynamics of materials with elastic range. Arch. Rat. Mech. Anal.31, 91-112 (1968). · Zbl 0169.28003
[19] Owen, D. R.: A mechanical theory of materials with elastic range. Arch. Rat. Mech. Anal.37, 85-110 (1970). · Zbl 0197.23403
[20] Rice, J. R.: Inelastic constitutive relations for solids: an internal variable theory and its application to metal plasticity. J. Mech. Phys. Solids19, 433-434 (1971). · Zbl 0235.73002
[21] Green, A. E., Naghdi, P. M.: A general theory of an elastic-plastic continuum. Arch. Rat. Mech. Anal.18, 251-281 (1965). · Zbl 0133.17701
[22] Green, A. E., Naghdi, P. M.: Some remarks on elastic-plastic deformation at finite strain. Int. J. Engng. Sci.9, 1219-1229 (1971). · Zbl 0226.73022
[23] Lubliner, J.: Generalized plasticity: an internal-variable model of materials with elastic range. Proc. Int. Symp. Plasticity (Norman, OK, 1984) (to be published). · Zbl 0572.73043
[24] Lubliner, J.: On the structure of the rate equations of materials with internal variables. Acta Mechanica17, 109-119 (1973). · Zbl 0279.73002
[25] Coleman, B. D., Gurtin, M. E.: Thermodynamics with internal state variables. J. Chemical Phys.47, 597-613 (1967).
[26] Lee, E. H., Liu, D. T.: Finite-strain elastic-plastic theory particularly for plane-wave analysis. J. Appl. Mech.38, 19-27 (1967).
[27] Nemat-Nasser, S.: Decomposition of strain measures and their rates in finite deformation elastoplasticity. Int. J. Solids Struct.15, 155-166 (1979). · Zbl 0391.73033
[28] Lee, E. H., McMeeking, R. M.: Concerning elastic and plastic components of deformation. Int. J. Solids Struct.16, 715-721 (1980). · Zbl 0459.73021
[29] Mandel, J.: Sur la définition de la vitesse de déformation élastique et sa relation avec la vitesse de constrainte. Int. J. Solids Struct.17, 873-878 (1981). · Zbl 0471.73041
[30] Nemat-Nasser, S.: On finite deformation elasto-plasticity. Int. J. Solids Struct.18, 857-872 (1982). · Zbl 0508.73030
[31] Mandel, J.: Sur la définition de la vitesse de déformation élastique en grande transformation élastoplastique. Int. J. Solids Struct.19, 573-578 (1983). · Zbl 0519.73033
[32] Hahn, H. T.: A finite-deformation theory of plasticity. Int. J. Solids Struct.10, 111-121 (1974). · Zbl 0272.73027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.