×

zbMATH — the first resource for mathematics

Gorenstein ideals of deviation two. (English) Zbl 0576.13007
In this paper the authors show that certain local codimension four, deviation two, Gorenstein algebras are linked to complete intersections, thus proving that these algebras have a definite structure. The additional hypotheses imposed are among the necessary conditions for an algebra to be linked to a complete intersection.
Reviewer: S.Raianu

MSC:
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
14M10 Complete intersections
13D99 Homological methods in commutative ring theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Avramov L., Math. Zeit 175 pp 249– (1980) · Zbl 0461.14014
[2] Buchsbaum D., Amer. J. Math 99 pp 447– (1977) · Zbl 0373.13006
[3] Buchweitz R.O., Homological properties which are invariant under linkage (1983)
[4] Herzog J., J. reine u. angew. Math 318 pp 83– (1980)
[5] Herzog J., Colecão Atas Soc. Brasileira de Mat
[6] Herzog J., Lecture Notes in Math 238 (1971)
[7] Herzog J., Cotangent functors of curve singularities (1983) · Zbl 0599.14025
[8] Hochster, M. Topics in the homological theory of modules over commutative rings. Regional Conference Series in Math. Vol. 24, Providence: Amer. Math. Soc. · Zbl 0302.13003
[9] Huneke C., Amer. J. Math 104 pp 1043– (1982) · Zbl 0505.13003
[10] Huneke C., Invent. Math 75 pp 301– (1984) · Zbl 0536.13005
[11] Huneke C., Amer. J. Math 75 (1984)
[12] Kunz E., J. Algebra 28 pp 111– (1974) · Zbl 0275.13025
[13] Kustin A., Commutative Algebra; Analytic Methods (1982)
[14] Kustin A., Math. Zeit 173 pp 171– (1980) · Zbl 0419.13013
[15] Kustin A., Trans. Amer. Math. Soc 284 pp 501– (1984)
[16] Kustin A., J. Alg 284 (1984)
[17] Peskine C., Invent. Math 26 pp 271– (1974) · Zbl 0298.14022
[18] Watanabe J., Nagoya Math. J 50 pp 227– (1973) · Zbl 0242.13019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.