Vlasov, A. A.; Logunov, A. A.; Mestvirishvili, M. A. Theory of gravitation based on Minkowski space and the principle of geometrization. (English. Russian original) Zbl 0579.53051 Theor. Math. Phys. 61, 1167-1169 (1984); translation from Teor. Mat. Fiz. 61, No. 3, 323-326 (1984). On the basis of the authors’ theory of gravitation, the six Hilbert- Einstein equations are supplemented by four covariant harmonic equations for the gravitational field. All three conservation laws are rigourously satisfied, and only a flat universe is possible, according to the theory. Reviewer: Z.Seidov Cited in 3 Documents MSC: 53B50 Applications of local differential geometry to the sciences 83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories 83E99 Unified, higher-dimensional and super field theories 83E05 Geometrodynamics and the holographic principle Keywords:Hilbert-Einstein equations; harmonic equations; gravitational field; flat universe PDF BibTeX XML Cite \textit{A. A. Vlasov} et al., Theor. Math. Phys. 61, 1167--1169 (1984; Zbl 0579.53051); translation from Teor. Mat. Fiz. 61, No. 3, 323--326 (1984) Full Text: DOI References: [1] A. A. Logunov et al., Teor. Mat. Fiz.,40, 291 (1979). [2] V. I. Denisov and A. A. Logunov, Teor. Mat. Fiz.,50, 3 (1982); Fiz. Elem. Chastits At. Yadra,13, 757 (1982); in: Modern Problems of Mathematics, Vol. 21 (Itogi nauki i tekhn., VINITI AN SSSR) [in Russian], VINITI, Moscow (1982), pp. 3-216. [3] A. A. Logunov and A. A. Vlasov, Minkowski Space as the Basis of a Physical Theory of Gravitation [in Russian], State University, Moscow (1984). · Zbl 0576.53072 [4] A. A. Logunov and A. A. Vlasov, Spherically Symmetric Solution in the Theory of Gravitation Based on Minkowski Space [in Russian], State University, Moscow (1984). · Zbl 0576.53073 [5] N. Rosen, Phys. Rev.,57, 147 (1940); Ann. Phys. (N. Y.),22, 1 (1963). · Zbl 0023.18705 · doi:10.1103/PhysRev.57.147 [6] A. Papapetrou, Proc. R. Ir. Acad. Sect. A,52, 11 (1948). [7] S. Gupta, Proc. Phys. Soc. London, Sect. A,65, 608 (1952). · Zbl 0047.21502 · doi:10.1088/0370-1298/65/8/304 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.