zbMATH — the first resource for mathematics

Growth of entire functions. (English) Zbl 0581.30025
Translation from Sib. Mat. Zh. 25, No.4(146), 111-119 (Russian) (1984; Zbl 0568.30024).

30D20 Entire functions of one complex variable, general theory
30D35 Value distribution of meromorphic functions of one complex variable, Nevanlinna theory
30D15 Special classes of entire functions of one complex variable and growth estimates
Full Text: DOI
[1] R. Nevanlinna, Single-Valued Analytic Functions [Russian translation], Gosudarstvennoe Izdatel’stvo Takhnikoteoreticheskoi Literatury, Moscow (1941).
[2] A. Wahlund, ?Über einen Zusammenhang Zwischen dem Maximalbetrage der ganzen Funktion und seiner unteren grenze nach dem Jensensche Theoreme,? Arkiv Math.,21A, No. 23, 1?34 (1929). · JFM 55.0775.01
[3] G. Valiron, ?Sur un theoreme de M. Wiman,? in: Opuscula Math. A. Wiman dedicata (1930), pp. 1?12.
[4] N. V. Govorov, ?On Paley’s conjecture,? Funkts. Anal. Prilozhen.,3, No. 2, 41?45 (1969).
[5] V. P. Petrenko, ?Growth of meromorphic functions of finite lower order,? Izv. Akad. Nauk SSSR, Ser. Mat.,33, 414?454 (1969). · Zbl 0194.11001
[6] A. A. Gol’dberg and I. V. Ostrovskii, ?Certain theorems on the growth of meromorphic functions,? Uch. Zap. Khark. Univ.,115, No. 27, Ser. 4, 3?37 (1961).
[7] I. V. Ostrovskii, ?On the defects of meromorphic functions of lower order less than one,? Dokl. Akad. Nauk SSSR,150, No. 1, 32?35 (1963).
[8] T. Shimizu, ?On the theory of meromorphic functions,? Jpn. J. Math.,6, 119?171 (1929). · JFM 55.0197.01
[9] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford (1964).
[10] A. A. Gol’dberg and I. V. Ostrovskii, Distribution of Values of Meromorphic Functions [in Russian], Nauka, Moscow (1970).
[11] E. Kamke, Handbook of Ordinary Differential Equations [in German], Chelsea Publ.
[12] S. E. Warschawski, ?Conformal mapping of infinite strips,? Matematika, Collection of Translations,2, No. 4, 67?116 (1958). · Zbl 0028.40303
[13] M. A. Evgrafov, Asymptotic Estimates and Entire Functions, Gordan and Breach (1962). · Zbl 0124.05501
[14] A. A. Gol’dberg, ?Sets on which the modulus of an entire functions is bounded below,? Sib. Mat. Zh.,20, No. 3, 512?518 (1979).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.