Leven, R. W.; Pompe, B.; Wilke, C.; Koch, B. P. Experiments on periodic and chaotic motions of a parametrically forced pendulum. (English) Zbl 0581.70022 Physica D 16, 371-384 (1985). Cited in 18 Documents MSC: 70K50 Bifurcations and instability for nonlinear problems in mechanics 70F99 Dynamics of a system of particles, including celestial mechanics 70-05 Experimental work for problems pertaining to mechanics of particles and systems Keywords:periodic and chaotic type aperiodic motions; parametrically harmonically excited pendulum; period-doubling cascade; increasing driving amplitude; decreasing damping force; coexistence of different periodic solutions; transition from metastable chaos to sustained chaotic behaviour PDF BibTeX XML Cite \textit{R. W. Leven} et al., Physica D 16, 371--384 (1985; Zbl 0581.70022) Full Text: DOI References: [1] Feigenbaum, M.J., J. stat. phys., 19, 25, (1978), For example [2] Pomeau, Y.; Manneville, P., Commun. math. phys., 74, 189, (1980) [3] Ueda, Y., J. stat. phys., 20, 181, (1979) [4] Leven, R.W.; Koch, B.P., Phys. lett., 86A, 71, (1981) [5] Grebogi, C.; Ott, E.; Yorke, J.A., Phys. rev. lett., 48, 1507, (1982) [6] Koch, B.P.; Leven, R.W.; Pompe, B.; Wilke, C., Phys. lett., 96A, 219, (1983) [7] Jeffries, C.; Perez, J., Phys. rev., 27A, 601, (1983) [8] Testa, J.; Pérez, J.; Jeffries, C., Phys. rev. lett., 48, 714, (1982) [9] Arneodo, A.; Coullet, P.; Tresser, C.; Libchaber, A.; Maurer, J.; d’Humières, D., Physica, 6D, 385, (1983) [10] Metropolis, M.; Stein, M.L.; Stein, P.R., J. combinatorial theory, 15, 25, (1973) [11] Moon, F.C.; Holmes, P.J., J. sound vibr., 65, 275, (1979) [12] Moon, F.C., J. appl. mech., 47, 638, (1980) [13] Croquette, V.; Poitou, C., C.R. acad. sci., B292, 1353, (1981) [14] Yorke, J.A.; Yorke, E.D., J. stat. phys., 21, 263, (1979) [15] McLaughlin, J.B., J. stat. phys., 24, 375, (1981) [16] Koch, B.P.; Leven, R.W., Physica, 16D, 1, (1985) [17] Ritala, R.K.; Salomaa, M.M., J. phys., 16C, L 474, (1983) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.