zbMATH — the first resource for mathematics

Application of a fractional-step method to incompressible Navier-Stokes equations. (English) Zbl 0582.76038
A numerical method for computing three-dimensional, time-dependent incompressible flows is presented. The method is based on a fractional-step, or time-splitting, scheme in conjunction with the approximate- factorization technique. It is shown that the use of velocity boundary conditions for the intermediate velocity field can lead to inconsistent numerical solutions. Appropriate boundary conditions for the intermediate velocity field are derived and tested. Numerical solutions for flows inside a driven cavity and over a backward-facing step are presented and compared with experimental data and other numerical results.

76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76D05 Navier-Stokes equations for incompressible viscous fluids
76M25 Other numerical methods (fluid mechanics) (MSC2010)
Full Text: DOI
[1] Chorin, A.J., J. comput. phys., 2, 12, (1967)
[2] Steger, J.L.; Kutler, P., Aiaa j., 15, 581, (1977)
[3] Phillips, N.A., The atmosphere and sea in motion, (1959), Rockefeller Inst. Press New York
[4] Chorin, A.J., Math. comput., 23, 341, (1969)
[5] Temam, R., Navier-Stokes equations. theory and numerical analysis, (1979), North-Holland Amsterdam · Zbl 0426.35003
[6] Beam, R.M.; Warming, R.F., J. comput. phys., 22, 87, (1976)
[7] Briley, W.R.; McDonald, H., J. comput. phys., 24, 428, (1977)
[8] Harlow, F.H.; Welch, J.E., Phys. fluids, 8, 2182, (1965)
[9] Leveque, R.L.; Oliger, J., Numerical analysis project, (), Manuscript NA-81-16
[10] Lilly, D.K., Mon. weather rev., 93, 11, (1965)
[11] Moin, P.; Kim, J., J. comput. phys., 35, 381, (1980)
[12] Kleiser, L.; Schumann, U., (), 165-173, Braunschweig
[13] Dorr, F.W., SIAM rev., 12, 2, 248, (1970)
[14] Chorin, A.J., The numerical solution of the Navier-Stokes equations for an incompressible fluid, () · Zbl 0168.46501
[15] Pearson, C.E., ()
[16] Burggraf, O.R., J. fluid mech., 24, 113, (1966)
[17] Goda, K., J. comput. phys., 30, 76, (1979)
[18] Ghia, U.; Ghia, K.N.; Shin, C.T., J. comput. phys., 48, 387, (1982)
[19] Benjamin, A.S.; Denny, V.E., J. comput. phys., 33, 340, (1979)
[20] Schreiber, R.; Keller, H.B., J. comput. phys., 49, 310, (1983)
[21] Koseff, J.R.; Street, R.L.; Gresho, P.M.; Upson, C.D.; Humphrey, J.A.C.; To, W.-M., (), 564
[22] Armaly, B.F.; Durst, F.; Pereira, J.C.F., J. fluid mech., 127, 473, (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.