Narasimhan, R. Analysis on real and complex manifolds. (3rd printing). (English) Zbl 0583.58001 North-Holland Mathematical Library, Vol. 35. Amsterdam - New York - Oxford: North-Holland. XIV, 246 p. $ 55.00; Dfl. 150.00 (1985). This is a reprint of a book, which has become almost a classic and which has been out of print for a long time. The new edition contains an additional preface with general comments on the contents, some historical remarks on ”Poincaré’s lemma” (Poincaré had nothing to do with this result, it should be attributed to Volterra) and remarks on an alternative approach to the theory of linear elliptic differential operators on complex vector bundles, based on pseudodifferential operators with symbol from the class \(S^ m\), all with complete references (21 items). Although its first printing appeared almost 20 years ago (1968; Zbl 0188.258) this book has remained up to date and modern. It constitutes an excellent text introducing global analysis. Reviewer: J.Lorenz Cited in 1 ReviewCited in 36 Documents MSC: 58-02 Research exposition (monographs, survey articles) pertaining to global analysis 35-02 Research exposition (monographs, survey articles) pertaining to partial differential equations 58J40 Pseudodifferential and Fourier integral operators on manifolds 58A15 Exterior differential systems (Cartan theory) 58A17 Pfaffian systems 58A05 Differentiable manifolds, foundations 58A10 Differential forms in global analysis 37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests 37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.) 58J32 Boundary value problems on manifolds 46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems 35J30 Higher-order elliptic equations 53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.) 35D10 Regularity of generalized solutions of PDE (MSC2000) Keywords:linear elliptic differential operators on manifolds Citations:Zbl 0188.258 PDF BibTeX XML OpenURL