×

zbMATH — the first resource for mathematics

Determining Lyapunov exponents from a time series. (English) Zbl 0585.58037
Authors’ summary: ”We present the first algorithms that allow the estimation of nonnegative Lyapunov exponents from an experimental time series. Lyapunov exponents, which provide a qualitative and quantitative characterization of dynamical behavior, are related to the exponentially fast divergence or convergence of nearby orbits in phase space. A system with one or more positive Lyapunov exponents is defined to be chaotic. Our method is rooted conceptually in a previously developed technique that could only be applied to analytically defined model systems: we monitor the long-term growth rate of small volume elements in an attractor. The method is tested on model systems with known Lyapunov spectra, and applied to data for the Belousov-Zhabotinskij reaction and Couette-Taylor flow.”
Reviewer: K.Furutani

MSC:
37-XX Dynamical systems and ergodic theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Swinney, H.L.; Abraham, N.B.; Gollub, J.P.; Swinney, H.L., Testing nonlinear dynamics, Physica, Physica, 11D, 252, (1984), See the references in: · Zbl 0582.58021
[2] Roux, J.-C.; Simoyi, R.H.; Swinney, H.L., Observation of a strange attractor, Physica, 8D, 257, (1983) · Zbl 0538.58024
[3] Brandstater, A.; Swift, J.; Swinney, H.L.; Wolf, A.; Farmer, J.D.; Jen, E.; Crutchfield, J.P., Low-dimensional chaos in a hydrodynamic system, Phys. rev. lett., 51, 1442, (1983)
[4] Malraison, B.; Atten, P.; Berge, P.; Dubois, M., Turbulence-dimension of strange attractors: an experimental determination for the chaotic regime of two convective systems, J. physique letters, 44, L-897, (1983)
[5] Guckenheimer, J.; Buzyna, G., Dimension measurements for geostrophic turbulence, Phys. rev. lett., 51, 1438, (1983)
[6] Gollub, J.P.; Romer, E.J.; Socolar, J.E., Trajectory divergence for coupled relaxation oscillators: measurements and models, J. stat. phys., 23, 321, (1980)
[7] Oseledec, V.I., A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trans. Moscow math. soc., 19, 197, (1968) · Zbl 0236.93034
[8] Benettin, G.; Galgani, L.; Giorgilli, A.; Strelcyn, J.-M., Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them, Meccanica, 15, 9, (1980) · Zbl 0488.70015
[9] Shimada, I.; Nagashima, T., A numerical approach to ergodic problem of dissipative dynamical systems, Prog. theor. phys., 61, 1605, (1979) · Zbl 1171.34327
[10] Shaw, R., Strange attractors, chaotic behavior, and information flow, Z. naturforsch., 36A, 80, (1981) · Zbl 0599.58033
[11] Hudson, J.L.; Mankin, J.C., Chaos in the Belousov-Zhabotinskii reaction, J. chem. phys., 74, 6171, (1981)
[12] Nagashima, H., Experiment on chaotic response of forced Belousov-Zhabotinskii reaction, J. phys. soc. Japan, 51, 21, (1982)
[13] Wolf, A.; Swift, J., Progress in computing Lyapunov exponents from experimental data, ()
[14] Wright, J., Method for calculating a Lyapunov exponent, Phys. rev., A29, 2923, (1984)
[15] Blacher, S.; Perdang, J., Power of chaos, Physica, 3D, 512, (1981) · Zbl 1194.37046
[16] Crutchfield, J.P.; Packard, N.H., Symbolic dynamics of noisy chaos, Physica, 7D, 201, (1983)
[17] Grassberger, P.; Procaccia, I., Estimation of the Kolmogorov entropy from a chaotic signal, Phys. rev., A28, 2591, (1983)
[18] Shaw, R., The dripping faucet, (1984), Aerial Press Santa Cruz, California
[19] Farmer, J.D.; Ott, E.; Yorke, J.A., The dimension of chaotic attractors, Physica, 7D, 153, (1983)
[20] S. Ciliberto and J.P. Gollub, “Chaotic Mode Competition in Parametrically Forced Surface Waves”—preprint.
[21] Grassberger, P.; Procaccia, I., Characterization of strange attractors, Phys. rev. lett., 50, 346, (1983)
[22] Haken, H., At least one Lyapunov exponent vanishes if the trajectory of an attractor does not contain a fixed point, Phys. lett., 94A, 71, (1983)
[23] Lorenz, E.N., Deterministic nonperiodic flow, J. atmos. sci., 20, 130, (1983) · Zbl 1417.37129
[24] Rossler, O.E., An equation for hyperchaos, Phys. lett., 71A, 155, (1979) · Zbl 0996.37502
[25] Hénon, M., A two-dimensional mapping with a strange attractor, Comm. math. phys., 50, 69, (1976) · Zbl 0576.58018
[26] Rossler, O.E., An equation for continuous chaos, Phys. lett., 57A, 397, (1976) · Zbl 1371.37062
[27] Mackey, M.C.; Glass, L., Oscillation and chaos in physiological control systems, Science, 197, 287, (1977) · Zbl 1383.92036
[28] J. Kaplan and J. Yorke, “Chaotic behavior of multi- dimensional difference equations,” in: Functional Differential Equations and the Approximation of Fixed Points, Lecture Notes in Mathematics, vol. 730, H.O. Peitgen and H.O. Walther, eds. (Springer, Berlin), p. 228; · Zbl 0515.34040
[29] Young, L.-S.; Ledrappier, F., Some relations between dimension and Lyapunov exponents, Ergodic theory and dynamical systems, Comm. math. phys., 81, 229, (1981) · Zbl 0486.58021
[30] Russell, D.A.; Hanson, J.D.; Ott, E., Dimension of strange attractors, Phys. rev. lett., 45, 1175, (1980)
[31] D. Ruelle, private communication.
[32] After R. Shaw, unpublished.
[33] Packard, N.H.; Crutchfield, J.P.; Farmer, J.D.; Shaw, R.S., Geometry from a time series, Phys. rev. lett., 45, 712, (1980)
[34] Takens, F., Detecting strange attractors in turbulence, (), 366
[35] Greenside, H.S.; Wolf, A.; Swift, J.; Pignataro, T., The impracticality of a box-counting algorithm for calculating the dimensionality of strange attractors, Phys. rev., A25, 3453, (1982)
[36] Roux, J.-C.; Rossi, A., Quasiperiodicity in chemical dynamics, (), 141
[37] Crutchfield, J.P.; Farmer, J.D.; Huberman, B.A., Fluctuations and simple chaotic dynamics, Phys. rep., 92, 45, (1982)
[38] Bowen, R.; Ruelle, D.; Ruelle, D., Applications conservant une mesure absolument continué par rapport à dx sur [0,1], Inv. math., Comm. math. phys., 55, 47, (1977) · Zbl 0362.28013
[39] Knuth, D.E., The art of computer programming, vol. 3 — sorting and searching, (1975), Addison-Wesley Reading, Mass.,
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.