Transport in Hamiltonian systems. (English) Zbl 0585.58039

The authors develop a theory of transport in Hamiltonian systems in the context of iteration of area-preserving maps. Invariant closed curves present complete barriers to transport, but in regions without such curves there are still invariant Cantor sets. In the regular components the motion is quasiperiodic and orbits lie in the KAM tori. By dividing the irregular components of phase space into regions separated by the strongest partial barriers, and assuming the motion is mixing within these regions, they present a global picture of transport.
Reviewer: W.V.Oliva


37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion
82C70 Transport processes in time-dependent statistical mechanics
Full Text: DOI


[1] Percival, I.C., Nonlinear dynamics and the beam-beam interaction, (), 302
[2] Aubry, S., (), 264
[3] Aubry, S.; Le Daeron, P.Y., Physica, 8D, 381, (1983)
[4] Mather, J.N., Topology, 21, 457, (1982)
[5] Katok, A., Ergodic theory & dyn. sys., 2, 185, (1982)
[6] Wigner, E.; Marcelin, R., J. chem. phys., Ann. physique, 3, 120, (1915), See also
[7] Bensimon, D.; Kadanoff, L.P., Physica, 13D, 82, (1984), (next paper)
[8] Mather, J.N., A criterion for non-existence of invariant circles, (1982), Princeton
[9] Chirikov, B.V., Phys. reports, 52, 263, (1979)
[10] Greene, J.M., J. math. phys., 20, 1183, (1979)
[11] Keck, J.C., Adv. chem. phys., 13, 85, (1967)
[12] MacKay, R.S.; Meiss, J.D., Phys. lett., 98A, 92, (1983)
[13] Percival, I.C., J. phys., 12A, L57, (1979)
[14] Birkhoff, G.D., Trans. AMS, 18, 199, (1917)
[15] Channon, S.R.; Lebowitz, J.L., NY ac. sci., 357, 108, (1980)
[16] Bartlett, J.H., Cel. mech., 28, 295, (1982)
[17] Scholtz, private communication.
[18] MacKay, R.S., Renormalisation in area preserving maps, (), Princeton · Zbl 0791.58002
[19] Schmidt, G., Phys. rev., 22A, 2849, (1980)
[20] Percival, I.C., Physica, 6D, 67, (1982)
[21] M. Peyrard and S. Aubry, “Critical behaviour at the transition by breaking of analyticity in the discrete Frenkel-Kontorova model”, submitted to J. Phys. C.
[22] Pesin, Ya.B., Russ. math. surveys, 32, 55, (1977)
[23] R.S. MacKay and I.C. Percival, “Universal scaling for the boundary of Siegel domains of arbitrary rotation number”, to appear.
[24] Meiss, J.D.; Cary, J.R.; Grebogi, C.; Crawford, J.D.; Kaufman, A.N.; Abarbanel, H.D.I., Physica, 6D, 360, (1983)
[25] Karney, C.F.F.; Vivaldi, F.; Casati, G.; Guarneri, I., Physica, Phys. rev. lett., 51, 727, (1983)
[26] J.M. Greene, private communication.
[27] Kemeny, J.G.; Snell, J.L.; Knapp, A.W., Denumerable Markov chains, (1976), Springer Berlin · Zbl 0149.13301
[28] Rechester, A.B.; White, R.B., Phys. rev. lett., 44, 1586, (1980)
[29] MacKay, R.S., Physica, 7D, 283, (1983)
[30] Escande, D.F.; Doveil, F., J. stat. phys., 26, 257, (1981)
[31] Helleman, R.H.G., Topics in nonlinear dynamics, (), 264
[32] Reinhardt, W.P.; Shirts, R.B.; Reinhardt, W.P.; Jaffe, C.; Reinhardt, W.P., J. phys. chem., J. chem. phys., J. chem. phys., 77, 5191, (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.