Baron, G.; Prodinger, H.; Tichy, R. F.; Boesch, F. T.; Wang, J. F. The number of spanning trees in the square of a cycle. (English) Zbl 0587.05040 Fibonacci Q. 23, 258-264 (1985). Let \(t(G)\) denote the number of spanning trees of a graph \(G\) and let \(F_n\) be the \(n\)th Fibonacci number defined inductively as \(F_0=0\), \(F_1=1\), \(F_n=F_{n-1}+F_{n-2}\). The authors prove that \(t(C_n^2)=nF_n^2\), where \(C_n^2\) is the square of the \(n\) vertex cycle \(C_n\). Reviewer: H. Gerber Cited in 1 ReviewCited in 10 Documents MSC: 05C38 Paths and cycles 05C05 Trees 05C30 Enumeration in graph theory Keywords:number of spanning trees; Fibonacci number; cycle PDF BibTeX XML Cite \textit{G. Baron} et al., Fibonacci Q. 23, 258--264 (1985; Zbl 0587.05040) OpenURL