×

On maximum principles for monotone matrices. (English) Zbl 0587.15014

The (n,n)-matrix A satisfies the maximum principle if \(Ay=f\) and \(f\geq 0\) implies \(y\geq 0\), and moreover \(\max \{y_ i|\) \(i\in N\}=\max \{y_ i| i\in N^+(f)\}\) with \(N=\{1,...,n\}\) and \(N^+(f)=\{j\in N| f_ j>0\}\). Define \(A^{(+)}=a_{ij}\) for \(i\neq j\) and \(a_{ij}>0\) and 0 elsewhere. The following holds. Let A be nonsingular with nonnegative inverse and such that \(A-A^{(+)}\) is either nonsingular, or singular and irreducible. Moreover, let \(A-A^{(+)}\) have nonnegative row sums. Then A satisfies the maximum principle. Analogous properties of the solutions to linear equations with an irreducible M-matrix are studied in connection with the open Leontief input-output model [the reviewer, ibid. 26, 175-201 (1979; Zbl 0409.90027)].
Reviewer: G.Sierksma

MSC:

15B48 Positive matrices and their generalizations; cones of matrices
93D25 Input-output approaches in control theory
15A09 Theory of matrix inversion and generalized inverses

Citations:

Zbl 0409.90027
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Berman, A.; Plemmons, R.J., Nonnegative matrices in the mathematical sciences, (1979), Academic New York · Zbl 0484.15016
[2] Ciarlet, P.G., An O(h2) method for a non-smooth boundary value problem, Aequationes math., 2, 1, 39-49, (1968) · Zbl 0159.11703
[3] Ciarlet, P.G., Discrete maximum principle for finite difference operators, Aequationes math., 4, 338-352, (1970) · Zbl 0198.14601
[4] Ciarlet, P.G.; Raviart, P.A., Maximum principle and uniform convergence for the finite element method, Comput. methods appl. mech. engrg., 2, 17-31, (1973) · Zbl 0251.65069
[5] Collatz, L., Aufgaben monotoner art, Arch. math. (basel), 3, 366-376, (1952) · Zbl 0048.09802
[6] Gantmacher, F.R., Matrix theory, (1967), Nauka Moscow, (in Russian) · Zbl 0085.01001
[7] Johnson, C.R., Inverse M-matrices, Linear algebra appl., 47, 195-216, (1982) · Zbl 0488.15011
[8] I-wen, Kuo, The Moore-penose inverse of singular M-matrices, Linear algebra appl., 17, 1-14, (1977) · Zbl 0361.15006
[9] Lorenz, J., Zur inversmonotonie diskreter probleme, Numer. math., 27, 227-238, (1977) · Zbl 0325.65014
[10] Metzler, L.A., A multiple-country theory of income transfers, J. polit. economy, 59, 14-29, (1951)
[11] Meyer, C.D., Limits and the index of a square matrix, SIAM J. appl. math., 26, 3, 469-478, (1974) · Zbl 0249.15004
[12] Morishima, M., Equilibrium, stability and growth. A multi-sectoral analysis, (1974), Clarendon Oxford · Zbl 0117.15406
[13] Moylan, P.J., Matrices with positive principal minors, Linear algebra appl., 17, 1, 53-58, (1977) · Zbl 0356.15005
[14] Ostrowski, A., Determinanten mit überwiegender hauptdiagonale und die absolute konvergenz von linearen iterationsprozessen, Comment. math. helv., 30, 175-210, (1955) · Zbl 0072.13803
[15] Pye, W.C., Nonnegative Drazin inverses, Linear algebra appl., 30, 149-153, (1980) · Zbl 0436.15002
[16] Rothblum, U.G., A representation of the Drazin inverse and characterization of the index, SIAM J. appl. math., 31, 4, 646-648, (1976) · Zbl 0355.15008
[17] Samarskij, A.A., The theory of difference schemes, (1977), Nauka Moscow, (in Russian) · Zbl 0462.65055
[18] Schröder, J., Lineare operatoren mit positiven inversen, Arch. rational mech. anal., 8, 408-434, (1961) · Zbl 0104.08802
[19] Sierksma, G., Nonnegative matrices: the open Leontief model, Linear algebra appl., 26, 175-201, (1979) · Zbl 0409.90027
[20] Stoyan, G., On a maximum principle for matrices and on conservation of monotonicity. with applications to discretization methods, Z. angew. math. mech., 62, 375-381, (1982) · Zbl 0501.65011
[21] Vojevodin, A.F.; Shugrin, S.M., Numerical methods for computation of one-dimensional systems, (1981), Nauka Novosibirsk, (in Russian) · Zbl 0474.65077
[22] Willoughby, R.A., The inverse M-matrix problem, Linear algebra appl., 18, 75-94, (1977) · Zbl 0355.15006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.