×

zbMATH — the first resource for mathematics

Robust asymptotic tracking for linear systems with unknown parameters. (English) Zbl 0587.93054
This paper considers a tracking problem for a linear system with uncertain parameters. The objective is to design a state feedback controller so that for all allowable parameter values the system is internally stable and its output asymptotically tracks the command reference input. A controller having this property is termed a robust tracking controller.
Conditions are given which can be used to design a robust tracking controller. The controller is linear with readily computable gains. The results are illustrated with an example.
Reviewer: J.O’Reilly

MSC:
93D20 Asymptotic stability in control theory
93B35 Sensitivity (robustness)
93C05 Linear systems in control theory
93B50 Synthesis problems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bradshaw, A.; Porter, B., Design of linear multivariable continuous-time tracking systems incorporating feedforward and feedback controllers, Int. J. systems sci., 6, 1021, (1975) · Zbl 0311.93011
[2] Chen, C.T., ()
[3] Corless, M.; Leitmann, G., Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamical systems, IEEE trans. aut. control, AC-26, 1139, (1981) · Zbl 0473.93056
[4] Corless, M.; Leitmann, G.; Ryan, E.P., Tracking in the presence of bounded uncertainties, () · Zbl 0586.93017
[5] Davison, E.J., The robust control of a servomechanism problem for linear time-invariant multivariable systems, IEEE trans. aut. control, AC-21, 25, (1976) · Zbl 0326.93007
[6] Davison, E.J.; Ferguson, I.J., The design of controllers for the multivariable robust servomechanism problem using parameter optimization methods, IEEE trans. aut. control, AC-26, 93, (1981) · Zbl 0478.93029
[7] Davison, E.J.; Goldenberg, A., The robust control of a general servomechanism problem: the servo compensator, Automatica, 11, 461, (1975) · Zbl 0319.93025
[8] Fortmann, T.E.; Hitz, K.L., ()
[9] Galimidi, A.R.; Barmish, B.R., Robustness of luenberger observers: linear systems stabilized via nonlinear control, () · Zbl 0598.93045
[10] Galimidi, A.R.; Barmish, B.R., Uncertain linear systems stabilized via reduced-order observers and nonlinear control, () · Zbl 0598.93045
[11] Jacobson, D.H., ()
[12] Kamen, E.W.; Khargonekar, P.P., On the control of linear systems whose coefficients are functions of parameters, IEEE trans. aut. control, AC-29, 25, (1984) · Zbl 0593.93042
[13] Leitmann, G., Guaranteed ultimate boundedness for a class of uncertain linear dynamical systems, IEEE trans. aut. control, AC-23, 1109, (1978) · Zbl 0388.93060
[14] Leitmann, G., Guaranteed asymptotic stability for some linear systems with bounded uncertainties, Dynamic syst., measmt control, 101, 212, (1979) · Zbl 0416.93077
[15] Melsa, J.L.; Schultz, P.G., ()
[16] Porter, B.; Bradshaw, A., Design of linear multivariable continuous-time tracking systems, Int. J. syst. sci., 5, 1155, (1974)
[17] Thorp, J.S.; Barmish, B.R., On guaranteed stability of uncertain linear systems via linear control, J. opt. theory appl., 35, 551, (1981) · Zbl 0446.93040
[18] Trankle, T.L.; Bryson, A.E., Control logic to track outputs of a command generator, J. guid. control, 1, 130, (1978)
[19] Vinkler, A.; Wood, I.J., A comparison of several techniques for designing controllers of uncertain dynamic systems, () · Zbl 0434.93071
[20] Wang, S.; Munro, N., An optimal design approach for the robust controller problem, Int. J. control, 38, 61, (1983) · Zbl 0519.93028
[21] Wonham, W.M., ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.