×

zbMATH — the first resource for mathematics

Multiple critical points of perturbed symmetric functionals. (English) Zbl 0589.35004
Summary: Variational problems which are invariant under a group of symmetries often possess multiple solutions. This paper studies the effect of perturbations which are not small and which destroy the symmetry for two classes of such problems and shows how multiple solutions persist despite the perturbation.

MSC:
35A15 Variational methods applied to PDEs
35J20 Variational methods for second-order elliptic equations
35B20 Perturbations in context of PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Charles V. Coffman, A minimum-maximum principle for a class of non-linear integral equations, J. Analyse Math. 22 (1969), 391 – 419. · Zbl 0179.15601 · doi:10.1007/BF02786802 · doi.org
[2] J. Hemple, Superlinear variational boundary value problems and nonuniqueness, Thesis, Univ. of New England, Australia, 1970.
[3] Antonio Ambrosetti, On the existence of multiple solutions for a class of nonlinear boundary value problems, Rend. Sem. Mat. Univ. Padova 49 (1973), 195 – 204. · Zbl 0273.35037
[4] Paul H. Rabinowitz, Variational methods for nonlinear elliptic eigenvalue problems, Indiana Univ. Math. J. 23 (1973/74), 729 – 754. · Zbl 0278.35040 · doi:10.1512/iumj.1974.23.23061 · doi.org
[5] Antonio Ambrosetti and Paul H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349 – 381. · Zbl 0273.49063
[6] Vieri Benci, Some critical point theorems and applications, Comm. Pure Appl. Math. 33 (1980), no. 2, 147 – 172. · Zbl 0472.58009 · doi:10.1002/cpa.3160330204 · doi.org
[7] Paul H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), no. 2, 157 – 184. · Zbl 0358.70014 · doi:10.1002/cpa.3160310203 · doi.org
[8] -, On large norm periodic solutions of some differential equations, Ergodic Theory and Dynamical Systems, Proc. Sympos. Yi (Maryland) , pp. 79-80 (to appear).
[9] Abbas Bahri and Henri Berestycki, A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc. 267 (1981), no. 1, 1 – 32. · Zbl 0476.35030
[10] Michael Struwe, Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems, Manuscripta Math. 32 (1980), no. 3-4, 335 – 364. · Zbl 0456.35031 · doi:10.1007/BF01299609 · doi.org
[11] G.-C. Dong and S. Li, On the existence of infinitely many solutions of the Dirichlet problem for some nonlinear elliptic equations, Univ. of Wisconsin Math. Research Center Tech. Rep. N02161, Dec., 1980.
[12] Abbas Bahri, Topological results on a certain class of functionals and application, J. Funct. Anal. 41 (1981), no. 3, 397 – 427. · Zbl 0499.35050 · doi:10.1016/0022-1236(81)90083-5 · doi.org
[13] Abbas Bahri and Henri Berestycki, Existence d’une infinité de solutions périodiques pour certains systèmes hamiltoniens en présence d’un terme de contrainte, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 5, 315 – 318 (French, with English summary). · Zbl 0471.70019
[14] P. H. Rabinowitz, Variational methods for nonlinear eigenvalue problems, Eigenvalues of non-linear problems (Centro Internaz. Mat. Estivo (C.I.M.E.), III Ciclo, Varenna, 1974) Edizioni Cremonese, Rome, 1974, pp. 139 – 195.
[15] Edward R. Fadell and Paul H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math. 45 (1978), no. 2, 139 – 174. · Zbl 0403.57001 · doi:10.1007/BF01390270 · doi.org
[16] J. T. Schwartz, Nonlinear functional analysis, Gordon and Breach Science Publishers, New York-London-Paris, 1969. Notes by H. Fattorini, R. Nirenberg and H. Porta, with an additional chapter by Hermann Karcher; Notes on Mathematics and its Applications. · Zbl 0203.14501
[17] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3) 13 (1959), 115 – 162. · Zbl 0088.07601
[18] R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. · Zbl 0051.28802
[19] David C. Clark, A variant of the Lusternik-Schnirelman theory, Indiana Univ. Math. J. 22 (1972/73), 65 – 74. · Zbl 0228.58006 · doi:10.1512/iumj.1972.22.22008 · doi.org
[20] S. I. Pohožaev, On the eigenfunctions of the equation \Delta \?+\?\?(\?)=0, Dokl. Akad. Nauk SSSR 165 (1965), 36 – 39 (Russian).
[21] E. R. Fadell, S. Husseini and P. H. Rabinowitz, On \( S^1\) versions of the Borsuk-Ulam Theorem, Univ. of Wisconsin Math. Res. Center Tech. Rep., 1981. · Zbl 0506.58010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.