An implementation of a discretization method for semi-infinite programming. (English) Zbl 0592.90061

Summary: For linear semi-infinite programming problems a discretization method is presented. A first coarse grid is successively refined in such a way that the solution on the foregoing grids can be used on the one hand as starting points for the subsequent grids and on the other hand to considerably reduce the number of constraints which have to be considered in the subsequent problems. This enables an efficient treatment of large problems with moderate storage requirements. A numerically stable simplex-algorithm is used to solve the LP-subproblems. Numerical examples from bivariate Chebyshev approximation are presented.


90C05 Linear programming
90C34 Semi-infinite programming
65K05 Numerical mathematical programming methods
Full Text: DOI


[1] L. Collatz,Funktionalanalysis und Numerische Mathematik (Springer, Berlin-Göttingen-Heidelberg, 1964). · Zbl 0139.09802
[2] K. Georg, ”Zur numerischen Realisierung von Kontinuitätsmethoden mit Prädiktor-Korrektor-oder simplizialen Verfahren”, SFB-preprint 526, University of Bonn (Bonn, FR Germany, 1982).
[3] K. Glashoff and S.-Å. Gustafson,Linear optimization and approximation (Springer-Verlag, New York, Heidelberg, Berlin, 1983). · Zbl 0526.90058
[4] S.-Å. Gustafson, ”On semi-infinite programming in numerical analysis”, in: R. Hettich, ed.,Semiinfinite programming (Springer-Verlag, Berlin, Heidelberg, New York, 1979) pp. 137–153. · Zbl 0406.49024
[5] S.-Å. Gustafson and K.O. Kortanek, ”A comprehensive approach to air quality planning: Abatement, monitoring networks and time interpolation”, in: G. Fronza and P. Melli, eds.,Mathematical models for planning and controlling air quality (Pergamon Press, Oxford, New York, Toronto, Sydney, Paris, Frankfurt, 1982) pp. 75–91.
[6] R. Hettich, ”A review of numerical methods for semi-infinite optimization”, in: A.V. Fiacco and K.O. Kortanek, eds.,Semi-infinite programming and applications (Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983) pp. 158–178. · Zbl 0519.49022
[7] R. Hettich, ”On the computation of membrane-eigenvalues by semi-infinite programming methods”, contributed paper, International Symposium on Infinite Dimensional Linear Programming, Churchill College (Cambridge, UK, September, 1984). · Zbl 0575.90071
[8] R. Hettich and P. Zencke,Numerische Methoden der Approximation und semi-infiniten Optimierung (Teubner, Stuttgart, 1982). · Zbl 0481.65033
[9] E. Polak, ”Semi-infinite optimization in engineering design”, in: A.V. Fiacco and K.O. Kortanek, eds.,Semi-infinite programming and applications (Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983) pp. 236–248. · Zbl 0509.49022
[10] R. Reemtsen and C.J. Lozano, ”An approximation technique for the numerical solution of a Stefan problem”,Numerische Mathematik 38 (1981) 141–154. · Zbl 0463.65079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.