Immediate and purely wild extensions of valued fields. (English) Zbl 0593.12018

In this well written paper the authors present a method for proving Kaplansky’s theorem concerning uniqueness of maximal immediate extensions of a valued field \(K\). Their principal tools and methods are based on an investigation of the structure of the Galois group over \(K\) and its subgroups defined by Hilbert’s ramification theory. Moreover, they utilize some analogy between maximal immediate extension and a completion to use a model theoretic point of view for their construction, especially in the case of simple transcendental immediate extensions of \(K\). At the end of the paper the authors partially define conditions for \(K\) to possess a unique maximal immediate extension.


12J10 Valued fields
12L12 Model theory of fields
Full Text: DOI EuDML


[1] Ax, J. - Kochen, S.: Diophantine problems over local fields, Amer. Journ. Math. 87, 605-648 (1965) · Zbl 0136.32805
[2] Bourbaki, N.: El?ments de Math?matique, Alg?bre commutative, chap. 5/6 (fasc.XXX), Paris (1964)
[3] Delon, F.: Quelques propri?t?s des corps valu?s en th?orie des mod?les. Th?se Paris VII (1981)
[4] Endler, O.: Valuation theory, Berlin-Heidelberg-New York (1972) · Zbl 0257.12111
[5] Ershov, Ju.L.: Decision problems and constructivizable models. Nauka, Moscow (1980) (Russian) · Zbl 0495.03009
[6] Huppert, B.: Endliche Gruppen I, Berlin-Heidelberg-New York (1967) · Zbl 0217.07201
[7] Kaplansky, I.: Maximal fields with valuations, Duke Math. Journ. 9, 303-321 (1942) · Zbl 0063.03135
[8] Krull, W.: Allgemeine Bewertungstheorie, J. reine angew. Math. 167, 160-196 (1931)
[9] Neukirch, J.: Zur Verzweigungstheorie der allgemeinen Krullschen Bewertungen, Abh. Math. Sem. Univ. Hamburg 32, 207-215 (1968) · Zbl 0165.35702
[10] Ostrowski, A.: Untersuchungen zur arithmetischen Theorie der K?rper, Math. Zeitschr. 39, 269-404 (1935) · Zbl 0010.15001
[11] Pank, M.: Beitr?ge zur reinen und angewandten Bewertungstheorie, Dissertation Heidelberg (1976)
[12] Potthoff, K.: Einf?hrung in die Modelltheorie und ihre Anwendungen, Darmstadt (1981) · Zbl 0457.03028
[13] Prestel, A.-Roquette, P.: Formally p-adic fields, Springer Lecture Notes in Math. 1050 (1984) · Zbl 0523.12016
[14] Robinson, A.: Nonstandard Arithmetic, Bull. Amer. Math. Soc. 73, 818-843 (1967)=Selected papers vol.2, 132-157 (1979) · Zbl 0189.28403
[15] Roquette, P.: Some Tendencies in Contemporary Algebra, in: W. J?ger et al. (ed.): Perspectives in Mathematics. Anniversary of Oberwolfach 1984, 393-422, Basel (1984) · Zbl 0606.12016
[16] Serre, J.P.: Cohomologie Galoisienne, 3rd ed. Springer Lecture Notes in Math. 5 (1965) · Zbl 0136.02801
[17] Schilling, O.F.G.: The theory of valuations, Math. Surveys A.M.S. (1950) · Zbl 0037.30702
[18] Steinitz, E.: Algebraische Theorie der K?rper, Journ. reine angew. Math. Nr. 137, 167-309 (1910)=reprint Chelsea (1950) · JFM 41.0445.03
[19] Whaples, G.: Galois cohomology of additive polynomials and n-th power mappings of fields, Duke Math. Journ. 24, 143-150 (1957) · Zbl 0081.26702
[20] Zassenhaus, H.: The theory of groups, 2nd ed. New York (1958) · Zbl 0083.24517
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.