×

zbMATH — the first resource for mathematics

Measuring the strangeness of strange attractors. (English) Zbl 0593.58024
The authors consider the question of which observables may be effectively used to distinguish chaos and random noise in a dynamical system possessing a strange attractor. After briefly reviewing some such quantities (fractal dimension, Lyapunov exponents information entropy), the authors suggest another such measure, the correlation exponent. This exponent is closely related to the above quantities, but its computation is considerably easier. The authors then describe this exponent in a variety of examples.
Reviewer: R.Devaney

MSC:
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
28A80 Fractals
37D25 Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.)
37A35 Entropy and other invariants, isomorphism, classification in ergodic theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Lorenz, E.N., J. atmos. sci., 20, 130, (1963)
[2] May, R.M., Nature, 261, 459, (1976)
[3] Ruelle, D.; Takens, F., Commun. math. phys., 20, 167, (1971) · Zbl 0227.76084
[4] Ott, E., Rev. mod. phys., 53, 655, (1981)
[5] Guckenheimer, J., Nature, 298, 358, (1982)
[6] Mandelbrot, B., Fractals — form, chance and dimension, (1977), Freeman San Francisco · Zbl 0376.28020
[7] Oseledec, V.I.; Ruelle, D., (), 19, 1, (1968)
[8] Farmer, J.D., Physica, 4D, 366, (1982)
[9] Mori, H., Progr. theor. phys., 63, 1044, (1980)
[10] Kaplan, J.L.; Yorke, J.A., Functional differential equations and approximations of fixed points, (), 204
[11] Russel, D.A.; Hanson, J.D.; Ott, E., Phys. rev. lett., 45, 1175, (1980)
[12] Froehling, H.; Crutchfield, J.P.; Farmer, D.; Packard, N.H.; Shaw, R., Physica, 3D, 605, (1981)
[13] Grassberger, P., J. stat. phys., 26, 173, (1981)
[14] Greenside, H.S.; Wolf, A.; Swift, J.; Pignataro, T., Phys. rev., A25, 3453, (1982)
[15] Grassberger, P.; Procaccia, I., Phys. rev. lett., 50, 346, (1983)
[16] Related discussions can be found in a preprint by F. Takens “Invariants Related to Dimensions and Entropy”.
[17] Mackey, M.C.; Glass, L., Science, 197, 287, (1977)
[18] Hénon, M., Commun. math. phys., 50, 69, (1976)
[19] Zaslavskii, G.M., Phys. lett., 69A, 145, (1978)
[20] Rabinovich, M.I.; Fabrikant, A.L., Sov. phys. JETP, Zh. exp. theor. fiz., 77, 617, (1979)
[21] Feller, W., (), 155
[22] Mandelbrot, B.B., Turbulence and the Navier-Stokes equations, () · Zbl 0746.00012
[23] H.G.E. Hentschel and I. Procaccia, Phys. Rev. A., in press.
[24] Stauffer, D., Phys. rep., 54C, 1, (1979)
[25] Witten, T.A.; Sander, L.M., Phys. rev. lett., 47, 1400, (1981)
[26] Packard, N.H.; Crutchfield, J.P.; Farmer, J.D.; Shaw, R.S., Phys. rev. lett., 45, 712, (1980)
[27] Takens, F., (), 1981
[28] P. Frederickson, J.L. Kaplan, E.D. Yorke and J.A. Yorke, “The Lyapunov Dimension of Strange Attractors” (revised), to appear in J. Diff. Eq. · Zbl 0515.34040
[29] Ledrappier, F., Commun. math. phys., 81, 229, (1981)
[30] L.S. Young, “Dimension, Entropy, and Lyapunov Exponents” preprint. · Zbl 0523.58024
[31] A. Ben-Mizrachi, I. Procaccia and P. Grassberger, Phys. Rev. A, submitted.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.