×

Adaptive finite element methods for the analysis of inviscid compressible flow: I: Fast refinement/unrefinement and moving mesh methods for unstructured meshes. (English) Zbl 0593.76080

New adaptive finite element methods are presented for the analysis of unsteady inviscid compressible flow in arbitrary two-dimensional domains. The procedures described herein are used in conjunction with a semi- explicit two-step algorithm for solving the time-dependent Euler equations in two space dimensions. Two schemes are presented for monitoring the evolution of error, and error estimates are used as a basis for a mesh refinement strategy. The capability of unrefinement (adaptively coarsening the mesh) is also included. The methods do not require a structured mesh and are applicable to quite general geometries.

MSC:

76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
76M99 Basic methods in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Anderson, D.A., Adaptive mesh schemes based on grid speeds, (), 311-318
[2] Babuška, I.; Zienkiewic, O.C.; de S.R. Gago, J.P.; de Oliveira, A., Adaptive methods and error refinement in finite element computation, (1986), Wiley London
[3] Baker, A.J.; Kim, J.W., Analyses on a Taylor weak-statement algorithm for hyperbolic conservation laws, () · Zbl 0645.76036
[4] Berger, M.; Jameson, A., Automatic adaptive grid refinements for the Euler equations, ()
[5] Berger, M.J.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. comput. phys., 53, 3, 484-512, (1984) · Zbl 0536.65071
[6] K.S. Bey, E.A. Thornton, P. Dechaumpai and R. Ramakrishnan, A new finite element approach for prediction of aerothermal loads—progress in inviscid flow computations, AIAA Paper No. 85-1533-CP.
[7] Burstein, S.Z., Finite difference calculations for hydrodynamic flows containing discontinuities, J. comput. phys., 2, 198-222, (1967) · Zbl 0166.22103
[8] Demkowicz, L.; Oden, J.T.; Strouboulis, T., Adaptive finite elements for flow problems with moving boundaries. part I: variational principles and a posteriori estimates, Comput. meths. appl. mech. engrg., 46, 217-251, (1984) · Zbl 0583.76025
[9] Demkowicz, L.; Oden, J.T.; Strouboulis, T., An adaptive p-version finite element method for transient flow problems with moving boundaries, (), 291-305
[10] Demkowicz, L.; Oden, J.T., An adaptive characteristic Petrov-Galerkin finite element method for convection dominated linear and non-linear parabolic problems in one space variable, () · Zbl 0601.65081
[11] Demkowicz, L.; Oden, J.T., An adaptive characteristic Petrov-Galerkin finte element method for convection-dominated linear and nonlinear parabolic problems in two space variables, Comput. meths. appl. mech. engrg., 55, 63-87, (1986) · Zbl 0602.76097
[12] Diaz, A.R.; Kikuchi, N.; Taylor, J.E., A method of grid optimization for finite element methods, Comput. meths. appl. mech. engrg., 41, 29-45, (1983) · Zbl 0509.73071
[13] Donéa, J., A Taylor Galerkin method for convective transport problems, Internat. J. numer. meths. engrg., 20, 101-119, (1984) · Zbl 0524.65071
[14] Lapidus, A., A detached shock calculation by second-order finite differences, J. comput. phys., 2, 154-177, (1967) · Zbl 0152.44804
[15] Löhner, R.; Morgan, K.; Zienkiewicz, O.C., Adaptive grid refinement for the Euler and compressible Navier-Stokes equations, (), 281-297
[16] Löhner, R.; Morgan, K.; Zienkiewicz, O.C., An adaptive finite element procedure for compressible high speed flows, Comput. meths. appl. mech. engrg., 51, 441-465, (1985) · Zbl 0568.76074
[17] Oden, J.T.; Carey, G.F., ()
[18] Oden, J.T.; Demkowicz, L.; Strouboulis, T.; Devloo, P., Adaptive methods for problems in solid and fluid mechanics, () · Zbl 0593.76080
[19] T. Strouboulis, J.T. Oden and L. Demkowicz, A-posteriori error estimates for some Galerkin space-time approximations of the unsteady Navier-Stokes equations, TICOM Rept. 85-5, The University of Texas at Austin, Austin, TX.
[20] von Neumann, J.; Richtmeyer, R.D., A method for numerical calculation of hydrodynamic shocks, J. appl. phys., 21, 232-236, (1950) · Zbl 0037.12002
[21] Zienkiewicz, O.C.; Löhner, R.; Morgan, K., High speed inviscid compressible flow by the finite element method, () · Zbl 0575.76070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.