# zbMATH — the first resource for mathematics

On two dimensional incompressible fluids. (English) Zbl 0594.35077
For the initial value problem (I.V.P) $(1)\quad u^ k_ t+(u.\nabla)u^ k=\nu \Delta u^ k-\partial_ kP,\quad x\in {\mathbb{R}}^ 2,\quad t\geq 0,\quad div u=0,\quad u(x,0)=u_ 0(x),\quad k=1,2,$ where $$u(x,t)=(u^ 1(x,t),u^ 2(x,t))$$ is the velocity field, $$P=P(x,t)$$ is the pressure, $$\nu\geq 0$$, the following theorem is proven: Theorem. For any $$u_ 0\in L^ 2(R^ 2)\cap H^ s_ p(R^ 2)$$, div $$u_ 0=0$$, with $$(s,p)\in [2,\infty]\times [2,\infty)$$ (except for the case $$(S,p)=(2,2))$$ the I.V.P (1) has a unique global classical solution u, where $$u\in C([0,\infty):\quad L^ 2(R^ 2)\cap H^ s_ p(R^ 2)).$$ Moreover for any $$T>0$$, $$\sup_{[0,T]}\| u(.,t)\|_{H^ s_ p}\leq K$$ where the constant K depends only on T, $$\| u_ 0\|_ 0$$ and $$\| u_ 0\|_{H^ s_ p}$$ but not on $$\nu$$.
Reviewer: V.Kostova

##### MSC:
 35Q30 Navier-Stokes equations 35A05 General existence and uniqueness theorems (PDE) (MSC2000)
##### Keywords:
Navier-Stokes equations; classical solution
Full Text:
##### References:
  Leray J., J. Math. Pures Appl 12 pp 1– (1933)  DOI: 10.1007/BF01474610 · Zbl 0008.06901 · doi:10.1007/BF01474610  Golovkin K.K., Trud. Mat. Inst. Steklov 92 pp 33– (1968)  DOI: 10.1007/BF00251436 · Zbl 0187.49508 · doi:10.1007/BF00251436  T . Kato Remarks on the Euler and Navier-Strokes equations in R2,preprint  G. Ponce,On persistent properties of the solutions to a class of nonlinear wave equations, preprint  DOI: 10.1090/S0025-5718-1981-0628693-0 · doi:10.1090/S0025-5718-1981-0628693-0  DOI: 10.1007/BF01174182 · Zbl 0545.35073 · doi:10.1007/BF01174182  Bergh, J. and Löfström, J. 1970. ”Interpolation Spaces”. Berlin, New York; Springer · Zbl 0344.46071  s. Klainerman, ”Nonlinear hyperbolic equations’. Lecture Notes , at Courant Institute (in Prepration). · Zbl 0648.53047  DOI: 10.1002/cpa.3160340405 · Zbl 0476.76068 · doi:10.1002/cpa.3160340405  G. Ponce , the initial value problem for there dimensional incompressible fluids ,preprint  DOI: 10.2307/1970699 · Zbl 0211.57401 · doi:10.2307/1970699
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.