×

zbMATH — the first resource for mathematics

Approximation by cubic \(C^ 1\)-splines on arbitrary triangulations. (English) Zbl 0595.41010
We present an efficient global representation for bivariate piecewise cubic splines of class \(C^ 1\) on arbitrary triangulations. The polynomial pieces of the splines on the different triangles are uniquely determined by a minimal number of real-valued parameters. The \(C^ 1\)- smoothness of the splines is ensured by imposing a linear equation on the parameters for every interior edge in the triangulation. The considerable saving in the amount of stored information makes this representation attractive for practical computations. A numerical method is discussed for computing the dimension of the space of these splines. Furthermore, we consider subspaces of splines satisfying certain boundary conditions. Some applications are given where piecewise cubic \(C^ 1\)-functions are used to solve practical approximation problems, such as the interpolation to data in combination with the minimization of the thin plate functional and the least-squares approximation of scattered data.

MSC:
41A15 Spline approximation
65D07 Numerical computation using splines
Software:
symrcm
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Alfeld, P.: On the dimension of multivariate piecewise polynomials. University of Utah, Salt Lake City. (manuscript 1985) · Zbl 0588.65004
[2] Alfeld, P.: A case study of multivariate piecewise polynomials. University of Utah, Salt Lake City. (manuscript 1985) · Zbl 0588.65004
[3] Bamberger, L.: Interpolation in bivariate spline spaces. In: Multivariate Approximation Theory III, Oberwolfach (W. Schempp, K. Zeller, eds.), pp. 25-34. Basel: Birkhäuser 1985 · Zbl 0566.41031
[4] Björck, A.: A general updating algorithm, for constrained linear least squares problems. SIAM J. Sci. Stat. Comput.5, 394-402 (1984) · Zbl 0562.65018 · doi:10.1137/0905029
[5] de Boor, C., Höllig, K.: Approximation order from bivariateC 1-cubics, a counterexample. Proc. Am. Math. Soc.87, 649-655 (1983) · Zbl 0545.41017
[6] de Boor, C., Höllig, K.: Bivariate Box-splines and smoothpp functions on a three direction mesh. J. Comput. Appl. Math.9, 13-28 (1983) · Zbl 0521.41009 · doi:10.1016/0377-0427(83)90025-0
[7] de Boor, C., De Vore, R.: Approximation by smooth multivariate splines. Trans. Am. Math. Soc.276, 775-788 (1983) · Zbl 0529.41010 · doi:10.1090/S0002-9947-1983-0688977-5
[8] de Boor, C., De Vore, R., Höllig, K.: Approximation order from smooth bivariatepp functions. In: Approximation Theory IV (C.K. Chui, L.L. Schumaker, J.D. Ward, eds.), pp. 353-357. New York: Academic Press 1983
[9] Chui, C.K., Wang, R.H.: On smooth multivariate spline functions. Math. Comput.41, 131-142 (1983) · Zbl 0542.41008 · doi:10.1090/S0025-5718-1983-0701629-1
[10] Chui, C.K., Wang, R.H.: Multivariate spline spaces. J. Math. Anal. Appl.94, 197-221 (1983) · Zbl 0526.41027 · doi:10.1016/0022-247X(83)90014-8
[11] Chui, C.K., Wang, R.H.: Spaces of bivariate cubic and quartic splines on type-1 triangulations. J. Math. Anal. Appl.101, 540-554 (1984) · Zbl 0597.41013 · doi:10.1016/0022-247X(84)90118-5
[12] Chui, C.K., Wang, R.H.: BivariateB-splines on triangulated rectangles. In: Approximation Theory IV. (C.K. Chui, L.L. Schumaker, J.D. Ward, eds.), pp. 413-418. New York: Academic Press 1983
[13] Chui, C.K., Wang, R.H.: ConcerningC 1 B-splines on triangulations of non-uniform rectangular partitions. Approximation Theory Appl.1, 11-18 (1984) · Zbl 0596.41016
[14] Chui, C.K., Wang, R.H.: MultivariateB-splines on triangulated rectangles. J. Math. Anal. Appl.92, 533-551 (1983) · Zbl 0523.41008 · doi:10.1016/0022-247X(83)90265-2
[15] Chui, C.K., Schumaker, L.L., Wang, R.H.: On space of piscewise polynomials with boundary conditions, II. Type-1 triangulations. In: Second Edmonton Conference on Approximation Theory. Am. Math. Soc.3, 51-66 (1983)
[16] Dyn, N., Levin, D., Rippa, S.: Surface interpolation and smoothing by thin plate splines. In: Approximation Theory IV (C.K. Chui, L.L. Schumaker, J.D. Ward, eds.), pp. 445-449. New York: Academic Press 1983 · Zbl 0553.41019
[17] George, A., Heath, M.T.: Solution of sparse linear least squares problems using Givens rotations. Lin. Alg. Appl.34, 69-83 (1980) · Zbl 0459.65025 · doi:10.1016/0024-3795(80)90159-7
[18] George, A., Heath, M.T., Ng, E.: A comparison of some methods for solving sparse linear least squares problems. SIAM J. Sci. Stat. Comp.4, 177-187 (1983) · Zbl 0532.65027 · doi:10.1137/0904013
[19] George, A., Liu, J.W.: An optimal algorithm for symbolic factorization of symmetric matrices. SIAM J. Sci. Stat. Comp.9, 583-593 (1980) · Zbl 0452.68049
[20] George, A., Liu, J.W.: Computer solution of large sparse positive definite systems. Englewood Cliffs NJ: Prentice Hall 1981 · Zbl 0516.65010
[21] Gmelig Meyling, R.H.J.: Numerical experiments with cubicC 1-spline functions. In: Approximation Theory V (C.K. Chui, L.L. Schumaker, J.D. Ward, eds.). pp. 475-478. New York: Academic Press 1986 · Zbl 0611.65005
[22] Gmelig Meyling, R.H.J., Pfluger, P.R.: On the dimension of the spaceS 2 1 (?) in special cases. In: Multivariate Approximation Theory III (W. Schempp, K. Zeller, eds.), pp. 180-190. Basel: Birkhäuser 1985 · Zbl 0567.41015
[23] Gmelig Meyling, R.H.J., Dahmen, W., Ursem, J.H.M.: Interpolation of bivariate functions by quadraticC 1-splines. (In preparation) · Zbl 0724.41003
[24] Guo, Z.R., Zhen, S.: A scheme of interpolation by bivariate splines. In: Approximation Theory V (C.K. Chui, L.L. Schumaker, J.D. Ward, eds.). pp. 367-370. New York: Academic Press 1986
[25] Heath, M.T.: Some extensions of an algorithm for sparse linear least squares problems. SIAM J. Sci. Stat. Comput.3, 223-237 (1982) · Zbl 0483.65027 · doi:10.1137/0903014
[26] Heindl, G.: Interpolation and approximation by piecewise quadraticC 1-functions of two variables. In: Multivariate Approximation Theory (W. Schempp, K. Zeller, eds.), pp. 146-161. Basel: Birkhäuser 1979
[27] Jia, R.G.: Approximation by smooth bivariate splines on a three direction mesh. In: Approximation Theory IV (C.K. Chui, L.L. Schumaker, J.D. Ward, eds.), pp. 539-545. New York: Academic Press 1983 · Zbl 0543.41007
[28] Lawson, C.L.: Software forC 1-surface interpolation. In: Math. Software III (J.R. Rice, ed.), pp. 161-194. New York: Academic Press 1977
[29] Morgan, J., Scott, R.: The dimension of piecewise polynomials. (manuscript 1977)
[30] Peereboom, J.J.: CubicC 1-smooth spline functions on triangular elements, masters thesis (in dutch). Amsterdam: University of Amsterdam 1985
[31] Powell, M.J.D., Sabin, M.A.: Piecewise quadratic approximations on triangles. ACM Trans. Math. Software3, 316-325 (1977) · Zbl 0375.41010 · doi:10.1145/355759.355761
[32] Schmidt, R.: Eine Methode zur Konstruktion vonC 1-Flächen zur Interpolation unregelmäßig verteilter Daten. In: Multivariate Approximation Theory II, Oberwolfach (W. Schempp, K. Zeller, eds), pp. 343-361. Basel: Birkhäuser 1982
[33] Schumaker, L.L.: Bounds on the dimension of space of multivariate piecewise polynomials. Rocky Mt. J. Math.14, 251-264 (1984) · Zbl 0601.41034 · doi:10.1216/RMJ-1984-14-1-251
[34] Schumaker, L.L.: On spaces of piecewise polynomials in two variables. In: Approximation Theory and Spline Functions, Newfoundland (S.P. Singh, J.H.W. Burry, B.B. Watson, eds.), pp. 151-197. Dordrecht: Reidel 1984
[35] Schumaker, L.L.: On the use of piecewise polynomials on triangulations in fitting scattered data. In: Proc. Conf. Algorithms for the Approximation of Functions and Data, RMCS, Shrivenham, England IMA Conference Proceedings Series 1985 (to appear)
[36] Ter Morsche, H.G.: Periodic bivariate cubic splines on type-1 triangulations. In: Approximation Theory V (C.K. Chui, L.L. Schumaker, J.D. Ward, eds.). pp. 487-490. New York: Academic Press 1986
[37] Vörgers, J.G.R.: Private communication (1985)
[38] Wang, R.H.: The structural characterization and interpolation for multivariate splines. Acta Math. Sin.18, 91-106 (1975) · Zbl 0358.41004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.