On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations. (English) Zbl 0596.35022

The initial value problem for the nonlinear Schrödinger equation (NLS) \[ i\phi_ t+\Delta \phi +| \phi |^{2\sigma}=0,\quad \phi: R^ N_ x\times R^+_ t\to C,\quad \phi (x,0)=\phi_ 0(x)\in H^ 1, \] in the limit case \(\sigma =2/N\), is considered. The problem has solutions that ”blow up” in finite time, namely: there exist initial data \(\phi_ 0\in H^ 1\) and a positive and finite constant \(T(\phi_ 0)\), such that \[ (1.1)\quad \lim_{t\to T}\int | \nabla \phi (x,t)|^ 2 dx=\infty. \] The author considers initial data \(\phi_ 0\) for which \(\| \phi_ 0\|_ 2=\| R\|_ 2\) where R is the ”ground state solitary wave” of (NLS). It is proved that if (1.1) holds for \(T\in (0,\infty)\), then, up to translations in space and phase, \[ \phi (x,t)\to (1/[\lambda (t)]^{N/2})R[x/\lambda (t)]\quad as\quad t\to T, \] strongly in \(H^ 1\), where \(\lambda (t)=\| \nabla R\|_ 2/\| \nabla \phi (t)\|_ 2\). Also a family of explicit solutions with such behavior is presented.
In the critical case \((\sigma =2)\) of the generalized Korteweg-de Vries equation (GKdV) \[ w_ t+(2\sigma +1)w^{2\sigma} w_ x+w_{xxx}=0,\quad w(x,0)=w_ 0(x)\in H^ 1, \] finite time blow up is believed to occur. An analogous result on convergence for solutions to (GKdV) with the asymptotics (1.1) is proved.
Reviewer: I.Onciulescu


35J10 Schrödinger operator, Schrödinger equation
35Q99 Partial differential equations of mathematical physics and other areas of application
35K55 Nonlinear parabolic equations
35B65 Smoothness and regularity of solutions to PDEs
Full Text: DOI


[1] Berestycki H, Arch. Rat. Mech. Anal 8 pp 313– (1983)
[2] Berestycki H, C.R. Acad 293 pp 489– (1983)
[3] DOI: 10.1007/BF01217349 · Zbl 0579.35025
[4] DOI: 10.1007/BF01403504 · Zbl 0513.35007
[5] Chiao R.Y, Phys. Rev. Lett 3 pp 479– (1984)
[6] DOI: 10.1007/BF00250684 · Zbl 0249.35029
[7] DOI: 10.1063/1.523491 · Zbl 0372.35009
[8] Ginibre J, J. Func. Anal 46 pp 81– (1972)
[9] Ginibre J, in Nonlinear P.D.E. and Applications, College de France, Seminar (1981)
[10] Kato T, in Studies in Appl. Math., Advanced in Math. Supplementary Studies
[11] DOI: 10.1103/PhysRevLett.15.1005
[12] Lions P.L, the locally compact case 5 (1984)
[13] Lions P.L, the limit case, parts 1,2,” Rev. Math. Iberomericana 5 (1984)
[14] McLeod P.L, Proc. Natl. Acad. Sci pp 6592–
[15] Shatah ,J. and Strauss, W.A. ”Instability of nonlinear bound states,” preprint · Zbl 0603.35007
[16] DOI: 10.1007/BF01626517 · Zbl 0356.35028
[17] DOI: 10.1016/0021-9991(83)90045-1 · Zbl 0519.76002
[18] DOI: 10.1002/cpa.3160370603 · Zbl 0543.65081
[19] Tsutsumi,M.” nonexistance of global solutions to nonlinear Schrödinger equations,”(unpuplished manuscript).
[20] Vlasov V.N, Izv. Rad. U 37 pp 1353– (1971)
[21] DOI: 10.1007/BF01208265 · Zbl 0527.35023
[22] DOI: 10.1137/0516034 · Zbl 0583.35028
[23] weinstein, M.I ”Lyapunov stability of ground of nonlinear dispersive evolution equations,”Commun,Pure Appl.Math.,in Press · Zbl 0594.35005
[24] Weinstein M.I, in Proceedings of AMS/SIAM Research Seminar on Nonlinear Systems of PDE in Applied Mathematics Santa Fe
[25] Zakharov V.E, Sov. Phys. JETP 41 pp 465– (1976)
[26] DOI: 10.1007/BF01394245 · Zbl 0538.35058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.