Royall, Richard M. Model robust confidence intervals using maximum likelihood estimators. (English) Zbl 0596.62032 Int. Stat. Rev. 54, 221-226 (1986). Summary: Standard large-sample confidence intervals about a maximum likelihood estimator \({\hat \theta}\) are two-thirds robust; i.e. when the parametric model is imperfect \({\hat \theta}\) often remains consistent and asymptotically normal. The confidence intervals are invalidated only because the third necessary condition, consistency of the variance estimator, fails. The ’delta method’ provides a simple alternative variance estimator which remains consistent under more general conditions and provides robust large-sample confidence intervals. Cited in 2 ReviewsCited in 32 Documents MSC: 62F35 Robustness and adaptive procedures (parametric inference) 62F25 Parametric tolerance and confidence regions Keywords:robustness; large-sample theory; maximum likelihood estimator; consistent; asymptotically normal; delta method; variance estimator PDF BibTeX XML Cite \textit{R. M. Royall}, Int. Stat. Rev. 54, 221--226 (1986; Zbl 0596.62032) Full Text: DOI OpenURL