×

zbMATH — the first resource for mathematics

Two approaches to hyperplane design in multivariable variable structure control systems. (English) Zbl 0596.93036
The design of a stable sliding mode in a variable structure control system with linear plant and sliding hyperplane is considered. Two methods of determining the subspace within which sliding motion takes place are presented, based on quadratic minimization and eigenstructure assignment. Chattering reduction is discussed and an example is presented.
Reviewer: T.Zolezzi

MSC:
93C35 Multivariable systems, multidimensional control systems
49J30 Existence of optimal solutions belonging to restricted classes (Lipschitz controls, bang-bang controls, etc.)
93B50 Synthesis problems
93B10 Canonical structure
93B55 Pole and zero placement problems
93C10 Nonlinear systems in control theory
93C15 Control/observation systems governed by ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/S0167-6911(82)80003-0 · Zbl 0473.93049 · doi:10.1016/S0167-6911(82)80003-0
[2] CALISE , A. J. , and RAMAN , K. V. , 1981 ,Proc. 19th Allerton Conf., 452 .
[3] DOI: 10.1109/TAC.1975.1101066 · Zbl 0318.93022 · doi:10.1109/TAC.1975.1101066
[4] DORLING , C. M. , 1985 , The design of variable structure control systems a manual for VASSYD package . Available from A. S. I. Zinober , University of Sheffield .
[5] DOI: 10.1016/0005-1098(69)90071-5 · Zbl 0182.48302 · doi:10.1016/0005-1098(69)90071-5
[6] EL-GHEZAWI O. M. E., Proc. Instn elect. Engrs 130 pp 1– (1983)
[7] DOI: 10.1080/00207178308933100 · Zbl 0538.93035 · doi:10.1080/00207178308933100
[8] DOI: 10.1080/00207178208932933 · Zbl 0491.93028 · doi:10.1080/00207178208932933
[9] DOI: 10.1049/piee.1976.0165 · doi:10.1049/piee.1976.0165
[10] ITKIS U., Control Systems of Variable Structure (1976) · Zbl 0256.93033
[11] DOI: 10.1109/TAC.1977.1101435 · Zbl 0346.93020 · doi:10.1109/TAC.1977.1101435
[12] KWAKERNAAK H., Linear Optimal Control Systems (1972) · Zbl 0276.93001
[13] KWATNY H. G., Proc. J.A.C.C. (1981)
[14] DOI: 10.1109/TAC.1976.1101355 · Zbl 0332.93047 · doi:10.1109/TAC.1976.1101355
[15] PORTER B., Modal Control Theory and Applications (1972) · Zbl 0258.93005
[16] DOI: 10.1080/00207178308933134 · Zbl 0522.93032 · doi:10.1080/00207178308933134
[17] DOI: 10.1093/imamci/1.3.223 · Zbl 0662.93059 · doi:10.1093/imamci/1.3.223
[18] DOI: 10.1016/0005-1098(84)90044-X · Zbl 0532.93002 · doi:10.1016/0005-1098(84)90044-X
[19] DOI: 10.1049/el:19750294 · doi:10.1049/el:19750294
[20] DOI: 10.1080/00207177708922318 · Zbl 0378.93029 · doi:10.1080/00207177708922318
[21] DOI: 10.1049/el:19750094 · doi:10.1049/el:19750094
[22] DOI: 10.1109/TAC.1977.1101446 · Zbl 0382.93036 · doi:10.1109/TAC.1977.1101446
[23] UTKIN V. I., Automn remote Control 39 pp 1466– (1978)
[24] DOI: 10.1109/TAC.1977.1101455 · Zbl 0353.93037 · doi:10.1109/TAC.1977.1101455
[25] DOI: 10.1109/TAC.1977.1101661 · Zbl 0382.49029 · doi:10.1109/TAC.1977.1101661
[26] YOUNG K.-K. D., Proc. J.A.C.C. (1981)
[27] ZINOBER A. S. I., Proc. 4th I.M.A. Int. Conf. on Control Theory (1986)
[28] ZINOBER A. S. I., Proc. Instn elect. Engrs 129 pp 6– (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.