×

zbMATH — the first resource for mathematics

Revisit to the THINC scheme: a simple algebraic VOF algorithm. (English) Zbl 1408.76547
Summary: This short note presents an improved multi-dimensional algebraic VOF method to capture moving interfaces. The interface jump in the THINC (tangent of hyperbola for INterface capturing) scheme is adaptively scaled to a proper thickness according to the interface orientation. The numerical accuracy in computing multi-dimensional moving interfaces is significantly improved. Without any geometrical reconstruction, the proposed method is extremely simple and easy to use, and its numerical accuracy is superior to other existing methods of its kind and comparable to the conventional PLIC (piecewise linear interface calculation) type VOF schemes.

MSC:
76T25 Granular flows
76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ashgriz, A.; Poo, J.P., FLAIR: flux line-segment model for advection and interface reconstruction, J. comput. phys., 93, 449-468, (1991) · Zbl 0739.76012
[2] Aulisa, E.; Manservisi, S.; Scardovelli, R.; Zaleski, S., A geometrical area-preserving volume-of-fluid advection method, J. comput. phys., 192, 355-364, (2003) · Zbl 1032.76632
[3] Aulisa, E.; Manservisi, S.; Scardovelli, R.; Zaleski, S., Interface reconstruction with least-squares fit and split advection in three-dimensional Cartesian geometry, J. comput. phys., 225, 2301-2319, (2007) · Zbl 1118.76048
[4] Cervone, A.; Manservisi, S.; Scardovelli, R.; Zaleski, S., A geometrical predictor-corrector advection scheme and its application to the volume fraction function, J. comput. phys., 228, 406-419, (2009) · Zbl 1158.76027
[5] Harvie, D.J.E.; F Fletcher, D., A new volume of fluid advection algorithm: the stream scheme, J. comput. phys., 162, 1-32, (2000) · Zbl 0964.76068
[6] Harvie, D.J.E.; F Fletcher, D., A new volume of fluid advection algorithm: the defined donating region scheme, Int. J. numer. methods fluids, 35, 151-172, (2001) · Zbl 0991.76062
[7] Hernandez1, J.; Lopez, J.; Gomez, P.; Zanzi, C.; Faura, F., A new volume of fluid method in three dimensions – part I: multidimensional advection method with face-matched flux polyhedra, Int. J. numer. methods fluids, 58, 897-921, (2008) · Zbl 1151.76552
[8] LeVeque, R., High-resolution conservative algorithms for advection in incompressible flow, SIAM J. numer. anal., 33, 627-665, (1996) · Zbl 0852.76057
[9] Lopez, J.; Gomez, P.; Zanzi, C.; Faura, F.; Hernandez, J., A new volume of fluid method in three dimensions – part II: piecewise-planar interface reconstruction with cubic-bezier fit, Int. J. numer. methods fluids, 58, 923-944, (2008) · Zbl 1151.76556
[10] Marek, M.; Aniszewski, W.; Boguslawski, A., Simplified volume of fluid method (SVOF) for two-phase flows, TASK quarter, 12, 255-265, (2008)
[11] Pan, D.; Chang, C.H., The capturing of free surfaces in incompressible multi-fluid flows, Int. J. numer. methods fluids, 30, 203-222, (2000) · Zbl 0972.76067
[12] Pilliod, J.E.; Puckett, E.G., Second-order accurate volume-of-fluid algorithms for tracking material interfaces, J. comput. phys., 199, 465-502, (2004) · Zbl 1126.76347
[13] Rider, W.J.; Kothe, D.B., Reconstructing volume tracking, J. comput. phys., 141, 112-152, (1998) · Zbl 0933.76069
[14] Rudman, M., Volume-tracking methods for interfacial flows calculations, Int. J. numer. methods fluids, 24, 671-691, (1997) · Zbl 0889.76069
[15] Sijoy, C.D.; Chaturvedi, S., Volume-of-fluid algorithm with different modified dynamic material ordering methods and their comparisons, J. comput. phys., 229, 3848-3863, (2010) · Zbl 1423.76307
[16] Xiao, F.; Honma, Y.; kono, T., A simple algebraic interface capturing scheme using hyperbolic tangent function, Int. J. numer. methods fluid, 48, 1023-1040, (2005) · Zbl 1072.76046
[17] Yakovenko, S.N.; Chang, K.C., Volume fraction flux approximation in a two-fluid flow, Thermophys. aeromech., 15, 2169-2186, (2008)
[18] Youngs, D.L., Time-dependent multi-material flow with large fluid distortion, (), 273-285 · Zbl 0537.76071
[19] Yokoi, K., Efficient implementation of THINC scheme: a simple and practical smoothed VOF algorithm, J. comput. phys., 226, 1985-2002, (2007) · Zbl 1388.76281
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.