zbMATH — the first resource for mathematics

Generation of simple groups. (English) Zbl 0601.20013
The main results of this paper are: Theorem A. Any finite nonabelian simple group can be generated by an involution and a Sylow 2-subgroup. - Theorem B. Let G be a finite group and K a field of characteristic p. If G acts faithfully on the irreducible KG-module V, then dim \(H^ 1(G,V)\leq (2/3)\dim V\). - Theorem C. Let G be a finite group of even order. Let O(G) be the maximal normal subgroup of G of odd order, and set \(\bar G=G/O(G)\). Then either G has a maximal subgroup of even index or \(A=O_ 2(\bar G)=\Phi (\bar G)\) and \(G/A\cong A_ 7\). - Theorem D. Let p be a prime and G a finite group. Then \(G=<P,R>\) for some p-subgroup P and p’-subgroup R.
The proofs of these results invoke the classification of finite simple groups. Various consequences of these results improve and extend work of several authors.
Reviewer: M.E.Harris

20D06 Simple groups: alternating groups and groups of Lie type
20F05 Generators, relations, and presentations of groups
Full Text: DOI
[1] Aschbacher, M., A characterization of Chevalley groups over fields of odd order, Ann. of math., 106, 353-468, (1977) · Zbl 0393.20011
[2] Aschbacher, M., Overgroups of Sylow subgroups in sporadic groups, Mem. amer. math. soc., 343, (1986) · Zbl 0585.20005
[3] Aschbacher, M.; Guralnick, Solvable generation of groups and Sylow subgroups of the lower central series, J. algebra, 77, 189-201, (1982) · Zbl 0485.20012
[4] Aschbacher, M.; Guralnick, R., Some applications of the first cohomology group, J. algebra, 90, 446-460, (1984) · Zbl 0554.20017
[5] Bloom, D., The subgroups ofPSL3 (q) for oddq, Trans. amer. math. soc., 127, 150-178, (1967) · Zbl 0153.03702
[6] Brauer, R., On the relation between the orthogonal group and the unimodular group, Arch. rational mech. anal., 18, 97-99, (1965) · Zbl 0134.26401
[7] Butler, G., The maximal subgroups of the sporadic simple group of held, J. algebra, 69, 189-201, (1981)
[8] Cooperstein, B., The geometry of root subgroups in exceptional groups, II, Geom. dedicata, 8, 317-381, (1979) · Zbl 0443.20005
[9] Curtis, C.; Kantor, W.; Seitz, G., The 2-transitive permutation representations of the finite Chevalley groups, Trans. amer. math. soc., 218, 1-59, (1976) · Zbl 0374.20002
[10] Gorenstein, D., Finite simple groups: an introduction to their classification, (1982), Plenum New York · Zbl 0483.20008
[11] Gorenstein, D.; Lyons, R., The local structure of finite groups of characteristic 2 type, Mem. amer. math. soc., 276, (1983) · Zbl 0519.20014
[12] Gruenberg, K., Cohomologic topics in group theory, () · Zbl 0205.32701
[13] Gruenberg, K., Relation modules of finite groups, () · Zbl 0111.02804
[14] Guralnick, R., Subgroups of prime power index in a simple group, J. algebra, 81, 304-311, (1983) · Zbl 0515.20011
[15] Jones, W.; Parshall, B., On the 1-cohomology of finite groups of Lie type, () · Zbl 0345.20046
[16] \scW. Kantor, Primitive permutation groups of odd degree, and an application to finite projective planes, preprint. · Zbl 0606.20003
[17] Kimmerle, W., On the generation gap of a finite group, J. pure appl. algebra, 36, 253-271, (1985) · Zbl 0594.20004
[18] Linnell, P.A., A cancellation theorem for lattices over an order, J. London math. soc., 31, 450-456, (1985) · Zbl 0592.20003
[19] Noll, W., Proof of the maximality of the orthogonal group in the unimodular group, Arch. rational mech. anal., 18, 100-102, (1965) · Zbl 0161.02501
[20] Steinberg, R., Lectures on Chevalley groups, Yale lecture notes, (1967), Yale
[21] Wielandt, H., Finite permutation groups, (1964), Academic Press New York · Zbl 0138.02501
[22] Wilson, R., The geometry and maximal subgroups of the simple groups of A. rudivalis and J. Tits, (), 533-563 · Zbl 0507.20013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.