Stochastic population dynamics driven by Lévy noise. (English) Zbl 1316.92063

Summary: This paper considers stochastic population dynamics driven by Lévy noise. The contributions of this paper lie in that: (a) Using the Khasminskii-Mao theorem, we show that the stochastic differential equation associated with our model has a unique global positive solution; (b) Applying an exponential martingale inequality with jumps, we discuss the asymptotic pathwise estimation of such a model.


92D25 Population dynamics (general)
60G51 Processes with independent increments; Lévy processes
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
Full Text: DOI arXiv


[1] Applebaum, D., Lévy processes and stochastics calculus, (2009), Cambridge University Press
[2] Bahar, A.; Mao, X., Stochastic delay Lotka-Volterra model, J. math. anal. appl., 292, 364-380, (2004) · Zbl 1043.92034
[3] Bao, J.; Mao, X.; Yin, G.; Yuan, C., Competitive Lotka-Volterra population dynamics with jumps, Nonlinear anal., 74, 6601-6616, (2011) · Zbl 1228.93112
[4] Hu, Y.; Wu, F.; Huang, C., Stochastic Lotka-Volterra models with multiple delays, J. math. anal. appl., 375, 42-57, (2011) · Zbl 1245.92063
[5] Jacob, N.; Wang, Y.; Yuan, C., Stochastic differential delay equations with jumps, under nonlinear growth condition, Stochastics, 81, 571-588, (2009) · Zbl 1191.60081
[6] Khasminskii, R., Stochastic stability of differential equations, (1969), Nauka Moscow, translation of the Russian edition
[7] Mao, X., A note on the Lasalle-type theorems for stochastic differential delay equations, J. math. anal. appl., 268, 125-142, (2002) · Zbl 0996.60064
[8] Mao, X.; Marion, G.; Renshaw, E., Environmental Brownian noise suppresses explosions in population dynamics, Stochastic process. appl., 97, 95-110, (2002) · Zbl 1058.60046
[9] Mao, X.; Sabanis, S.; Renshaw, E., Asymptotic behaviour of the stochastic Lotka-Volterra model, J. math. anal. appl., 287, 141-156, (2003) · Zbl 1048.92027
[10] Mao, X.; Yuan, C., Stochastic differential equations with Markovian switching, (2006), Imperial College Press · Zbl 1126.60002
[11] Mao, X.; Yuan, C.; Zou, J., Stochastic differential delay equations of population dynamics, J. math. anal. appl., 304, 296-320, (2005) · Zbl 1062.92055
[12] Wee, I.S., Stability for multidimensional jump-diffusion processes, Stochastic process. appl., 80, 193-209, (1999) · Zbl 0962.60046
[13] Wu, F.; Hu, S., Stochastic functional Kolmogorov-type population dynamics, J. math. anal. appl., 347, 534-549, (2008) · Zbl 1158.60024
[14] Wu, F.; Hu, Y., Existence and uniqueness of global positive solutions to the stochastic functional Kolmogorov-type system, IMA J. appl. math., 75, 317-332, (2010) · Zbl 1232.60047
[15] Wu, F.; Xu, Y., Stochastic Lotka-Volterra population dynamics with infinite delay, SIAM J. appl. math., 70, 641-657, (2009) · Zbl 1197.34164
[16] Yuan, C.; Mao, X.; Lygeros, J., Stochastic hybrid delay population dynamics: well-posed models and extinction, J. biol. dyn., 3, 1-21, (2009) · Zbl 1155.92044
[17] Zhu, C.; Yin, G., On hybrid competitive Lotka-Volterra ecosystems, Nonlinear anal., 71, e1370-e1379, (2009) · Zbl 1238.34059
[18] Zhu, C.; Yin, G., On competitive Lotka-Volterra model in random environments, J. math. anal. appl., 357, 154-170, (2009) · Zbl 1182.34078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.