×

zbMATH — the first resource for mathematics

Effect of random perturbations on adaptive observation techniques. (English) Zbl 1426.76632
Summary: An observation sensitivity (OS) method to identify targeted observations is implemented in the context of four-dimensional variational (4D-Var) data assimilation. This methodology is compared with the well-established adjoint sensitivity (AS) method using a nonlinear Burgers equation as a test model. Automatic differentiation software is used to implement the first-order adjoint model (ADM) to calculate the gradient of the cost function required in the 4D-Var minimization algorithm and in the AS computations and the second-order ADM to obtain information on the Hessian matrix of the 4D-Var cost that is necessary in the OS computations. Numerical results indicate that the observation-targeting is particularly successful in reducing the forecast error for moderate Reynolds numbers. The potential benefits of the OS targeting approach over the AS are investigated. The effect of random perturbations on the performance of these adaptive observation techniques is also analyzed.

MSC:
76M35 Stochastic analysis applied to problems in fluid mechanics
Software:
TAF; TAMC
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] LeDimet, Sensitivity analysis in data assimilation, Journal of the Meteorological Society of Japan 75 pp 245– (1997)
[2] Langland, Issues in targeted observing, Quarterly Journal of the Royal Meteorological Society 131 pp 3409– (2005) · doi:10.1256/qj.05.130
[3] Langland, Targeted observations in FASTEX: adjoint-based targeting procedures and data impact experiments in IOP17 and IOP18, Quarterly Journal of the Royal Meteorological Society 125 pp 3241– (1999) · doi:10.1002/qj.49712556107
[4] Palmer, Singular vectors, metrics, and adaptive observations, Journal of the Atmospheric Sciences 55 pp 633– (1998) · doi:10.1175/1520-0469(1998)055<0633:SVMAAO>2.0.CO;2
[5] Gelaro, An assessment of the singular vector approach to targeted observing using the FASTEX data-set, Quarterly Journal of the Royal Meteorological Society 125 pp 3299– (1999) · doi:10.1002/qj.49712556109
[6] Daescu, Adaptive observations in the context of 4d-var data assimilation, Meteorology and Atmospheric Physics 85 pp 205– (2004) · doi:10.1007/s00703-003-0011-5
[7] Baker, Observation and background adjoint sensitivity in the adaptive observation-targeting problem, Quarterly Journal of the Royal Meteorological Society 126 pp 1431– (2000) · doi:10.1256/smsqj.56510
[8] Daescu, On the sensitivity equations of four-dimensional variational (4D-Var) data assimilation, Monthly Weather Review 136 pp 3050– (2008) · doi:10.1175/2007MWR2382.1
[9] Doerenbecher, Sensitivity to observations applied to FASTEX cases, Nonlinear Processes in Geophysics 8 pp 467– (2001) · doi:10.5194/npg-8-467-2001
[10] Fourrié, Adjoint sensitivity of the forecast to TOVS observations, Quarterly Journal of the Royal Meteorological Society 128 pp 2759– (2002) · doi:10.1256/qj.01.167
[11] Langland, Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system, Tellus 56A pp 459– (2004)
[12] Zhu, Observation sensitivity calculations using the adjoint of the Gridpoint Statistical Interpolation (GSI) analysis system, Monthly Weather Review 136 pp 335– (2008) · doi:10.1175/MWR3525.1
[13] Trémolet, Computation of observation sensitivity and observation impact in incremental variational data assimilation, Tellus 60A pp 964– (2008) · doi:10.1111/j.1600-0870.2008.00349.x
[14] LeDimet, Second order information in data assimilation, Monthly Weather Review 130 (3) pp 629– (2002) · doi:10.1175/1520-0493(2002)130<0629:SOIIDA>2.0.CO;2
[15] Giering, Recipes for adjoint code construction, ACM Transactions on Mathematical Software 24 pp 437– (1998) · Zbl 0934.65027 · doi:10.1145/293686.293695
[16] Rabier, Four-dimensional assimilation in the presence of baroclinic instability, Quarterly Journal of the Royal Meteorological Society 118 pp 649– (1992) · doi:10.1002/qj.49711850604
[17] Xu, Toward a weak constraint operational 4D-Var system: application to the Burgers’ equation, Meteorologische Zeitschrift 16 pp 741– (2007) · doi:10.1127/0941-2948/2007/0246
[18] Liu, On the limited memory BFGS method for large-scale minimization, Mathematical Programming 45 pp 503– (1989) · Zbl 0696.90048 · doi:10.1007/BF01589116
[19] Navon, Variational data assimilation with an adiabatic version of the NMC spectral model, Monthly Weather Review 120 pp 1433– (1992) · doi:10.1175/1520-0493(1992)120<1433:VDAWAA>2.0.CO;2
[20] Wang, The second order adjoint analysis: theory and applications, Meteorology and Atmospheric Physics 50 pp 3– (1992) · doi:10.1007/BF01025501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.