Gürses, M.; Oǧuz, Ö. A super soliton connection. (English) Zbl 0608.35072 Lett. Math. Phys. 11, 235-246 (1986). This short note gives a survey of the AKNS schema and its geometrical interpretation. Section 1 and 2 contain a description of the scheme and in section 3 a super s1(2,R) valued connection 1-form. Then the zero curvature condition leads to a new class of super integrable non-linear evolution equations associated with the super AKNS scheme. The extension of the super AKNS scheme is described and its applications are presented in the final section. Reviewer: P.Mahanti Cited in 17 Documents MSC: 35Q99 Partial differential equations of mathematical physics and other areas of application 35G20 Nonlinear higher-order PDEs Keywords:soliton; super extension; Lax hierarchy; super nonlinear Schrödinger equation; Bäcklund transformations; survey; AKNS schema; zero curvature condition; integrable non-linear evolution equations PDF BibTeX XML Cite \textit{M. Gürses} and \textit{Ö. Oǧuz}, Lett. Math. Phys. 11, 235--246 (1986; Zbl 0608.35072) Full Text: DOI OpenURL References: [1] Dodd R. K., Eilbeck J. C., Gibbon J. D., and Morris H. C., Solitons and Non-Linear Wave Equations, Academic Press, London, 1982. · Zbl 0496.35001 [2] Ablowitz M. J., Kaub J. D., Newell A. C., and Segur H., Phys. Rev. Lett. 30, 1262 (1973); ibid. 31, 125 (1973); Stud. App. Math 53, 249 (1974). [3] Crampin M., Pirani F. A. E., and Robinson D. C., Lett. Math. Phys. 2, 15 (1977); Gürses M. and Nutku, Y., J. Math Phys. 22, 1393 (1981); Sasaki, R., Phys. Lett. A71, 390 (1979); ibid. A73, 77 (1979). · Zbl 0363.35032 [4] Zakharov V. E. and Shabat S. B., Funct. Anal. Appl. 13, 166 (1979). [5] Ferrara S., Girardello L., and Sciuto S., Phys. Lett. B76, 303 (1978); Girardello, L. and Sciuto, S., Phys. Lett. B77, 267 (1978); Chaichian, M. and Kulish, P. P., Phys. Lett. B78, 413 (1978); Hoker, E. D. and Jackiw, R., Phys. Rev. D26, 3517 (1982). [6] Auria R. D. and Sciuto S., Nucl. Phys. B171, 189 (1980); Olshanetsky, M. A., Commun. Math. Phys. 8, 63 (1983). [7] Omete M. and Inoue K., Phys. Lett. B147, 317 (1984); Prog. Theor. Phys. 72, 641 (1984). [8] Kupershmidt B. A., Prog. Nat. Acad. Sci. 81, 6562 (1984); Kulish, P. P., Dokl. HN SSSR 225, 323 (1980); Kulish, P. P., Lett. Math. Phys. 10, 87 (1985). · Zbl 0553.35079 [9] Manin Yu I. and Radul A., Commun. Math. Phys. 98, 65 (1985). · Zbl 0607.35075 [10] Kupershmidt B. A., Phys. Lett. A102, 213 (1984). [11] Kupershmidt, B. A., J. Phys. A: Math. Gen. 17, L863 (1983). [12] Gürses M. and Oğuz Ö., Phys. Lett. A108, 437 (1985). [13] Berezin F. A., The Method of Second Quantization, Academic Press, New York, 1966. · Zbl 0151.44001 [14] Lax P. D., Commun. Pure Appl. Math 24, 407 (1968). [15] Gürses M., in C. Hoenselaers and W. Dietz (eds.), Solutions of Einstein’s Equations: Techniques and Results, Lecture Notes in Physics No. 205, Springer-Verlag, Berlin, Heidelberg, 1984. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.