Painless nonorthogonal expansions. (English) Zbl 0608.46014

In a Hilbert space \({\mathcal H}\), discrete families of vectors \(\{h_ j\}\) with the property that \(f=\sum_{j}<h_ j| f>h_ j\) for every f in \({\mathcal H}\) are considered. This expansion formula is obviously true if the family is an orthonormal basis of \({\mathcal H}\), but also can hold in situations where the \(h_ j\) are not mutually orthogonal and are ”overcomplete”. The two classes of examples studied here are (i) appropriate sets of Weyl-Heisenberg coherent states, based on certain (non-Gaussian) fiducial vectors, and (ii) analogous families of affine coherent states. It is believed, that such ”quasiorthogonal expansions” will be a useful tool in many areas of theoretical physics and applied mathematics.


46C99 Inner product spaces and their generalizations, Hilbert spaces
46B15 Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces
Full Text: DOI


[1] DOI: 10.1090/S0002-9947-1952-0047179-6
[2] DOI: 10.1137/0515056 · Zbl 0578.42007
[3] DOI: 10.1137/0515056 · Zbl 0578.42007
[4] DOI: 10.1063/1.526761 · Zbl 0571.22021
[5] DOI: 10.1063/1.526761 · Zbl 0571.22021
[6] DOI: 10.1063/1.526761 · Zbl 0571.22021
[7] DOI: 10.1016/0034-4877(71)90006-1
[8] Perelomov A. M., Teor. Mat. Fiz. 6 pp 213– (1971)
[9] DOI: 10.1103/PhysRevB.12.1118
[10] DOI: 10.1103/PhysRevB.12.1118
[11] DOI: 10.1063/1.1664833 · Zbl 0184.54601
[12] DOI: 10.1063/1.526072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.