Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3. (English) Zbl 0608.58034

A cusp type germ of vector fields is a \({\mathcal C}^{\infty}\) germ at \(0\in {\mathbb{R}}^ 2\), whose 2-jet is \({\mathcal C}^{\infty}\) conjugate to \(y\frac{\partial}{\partial x}+(\alpha x^ 2+\beta xy)\frac{\partial}{\partial y}\) with \(\alpha\neq 0\). We define a submanifold of codimension 5 in the space of germs \(\Sigma ^ 3_{C\pm}\), consisting of germs of cusp type whose 4-jet is \({\mathcal C}^ 0\) equivalent to \(y\frac{\partial}{\partial x}+(x^ 2\pm x^ 3y)\frac{\partial}{\partial y}\). Our main result can be stated as follows: any local 3-parameter family in \((0,0)\in {\mathbb{R}}^ 2\times {\mathbb{R}}^ 3\), cutting \(\Sigma ^ 3_{C\pm}\) transversally in (0,0) is fibre-\({\mathcal C}^ 0\) equivalent to \[ \tilde X^{\pm}_{\lambda} = y\frac{\partial}{\partial x}+(x^ 2+\mu +y(\nu _ 0+\nu _ 1x\pm x^ 3))\frac{\partial}{\partial y}. \]


37G99 Local and nonlocal bifurcation theory for dynamical systems
37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
Full Text: DOI


[1] Jashenko, Amer. Math. Soc. Transl. 118 pp none– (1982)
[2] none, Trudy Sem. Petrovsk. 3 pp 49– (1978)
[3] Dumortier, Singularities of Vector Fields (1978) · Zbl 0346.58002
[4] Cherkas, Differential’ nye Uravneniya 17 pp 469– (1971)
[5] Bogdanov, Sel. Math. Sov. 1 pp none– (1976)
[6] Bogdanov, Sel. Math. Sov. 1 pp none– (1976)
[7] Arnol’d, Méthodes Mathématiques de la Mecanique Classique (1976)
[8] Arnol’d, Chapitres Supplémentaires de la Théorie des Equations Différentielles Ordinaires (1980)
[9] Arnol’d, Russian Mathematical Surveys V 26 pp none– (1971)
[10] Takens, Publ. math. I.H.E.S. 43 pp none– (1974) · Zbl 0279.58009
[11] Takens, Applications of Global Analysis I 3 (1974)
[12] DOI: 10.1016/0022-0396(73)90062-4 · Zbl 0273.35009
[13] Sotomayor, Publ. Math. I.H.E.S. 43 pp none– (1974) · Zbl 0279.58008
[14] DOI: 10.2307/1969640 · Zbl 0056.01804
[15] Roussarie, Bol. da Soc. Mat. Bras. none pp none– (none)
[16] Malgrange, Ideals of Differentiate Function (1966)
[17] DOI: 10.1016/0001-8708(75)90048-1 · Zbl 0361.34026
[18] Dumortier, Astérisque 59?60 pp 7– (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.