×

zbMATH — the first resource for mathematics

A useful estimate in the multidimensional invariance principle. (English) Zbl 0608.60029
An estimate of the convergence speed in the multidimensional invariance principle is obtained. Using this estimate, we can prove strong invariance principles for partial sums of independent not necessarily identically distributed multidimensional random vectors.

MSC:
60F17 Functional limit theorems; invariance principles
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Berkes, I., Philipp, W.: Approximation theorems for independent and weakly dependent random vectors. Ann. Probab. 7, 29–54 (1979) · Zbl 0392.60024 · doi:10.1214/aop/1176995146
[2] Borovkov, A.A.: On the rate of convergence for the invariance principle. Theor. Probab. Appl. 18, 207–225 (1973) · Zbl 0323.60031 · doi:10.1137/1118025
[3] Borovkov, A.A., Sahanenko, A.I.: On estimates of the rate of convergence in the invariance principle for Banach spaces. Theor. Probab. Appl. 25, 721–731 (1980) · Zbl 0471.60039 · doi:10.1137/1125087
[4] Borovkov, A.A., Sahanenko, A.I.: On the rate of convergence in invariance principle. In: Probability and Mathematical Statistics (Lect. Notes Math. 1021 59–66). Berlin Heidelberg New York: Springer 1983 · Zbl 0516.60030
[5] Csörgo, M., Révész, P.: A new method to prove Strassen type laws of invariance principle I.–II. Z. Wahrscheinlichkeitstheor. Verw. Geb. 31, 255–269 (1975) · Zbl 0283.60023 · doi:10.1007/BF00532865
[6] Csörgo, M., Révész, P.: Strong approximations in probability and statistics. New York: Academic Press 1981 · Zbl 0539.60029
[7] Dudley, R.M.: Distances of probability measures and random variables. Ann. Math. Statist 39, 1563–1572 (1968) · Zbl 0169.20602
[8] Einmahl, U.: Strong invariance principles for partial sums of independent random vectors. To appear: Annals Probab. (1987) · Zbl 0637.60041
[9] Fuk, D.Kh., Nagaev, S.V.: Probability inequalities for sums of independent random variables. Theor. Probab. Appl. 16, 643–660 (1971) · Zbl 0259.60024 · doi:10.1137/1116071
[10] Komlós, J., Major, P., Tusnády, G.: An approximation of partial sums of independent R.V.’s and the sample D.F. II. Z. Wahrscheinlichkeitstheor. Verw. Gebiete 34, 33–58 (1976) · Zbl 0307.60045 · doi:10.1007/BF00532688
[11] Major, P.: The approximation of partial sums of independent r.v.’s. Z. Wahrscheinlichkeitstheor. Verw. Gebiete 35, 213–220 (1976) · Zbl 0338.60031 · doi:10.1007/BF00532673
[12] Petrov, V.V.: Sums of independent random variables. Berlin Heidelberg New York: Springer 1975 · Zbl 0322.60043
[13] Sahanenko, A.I.: On unimprovable estimates of the rate of convergence in invariance principle. In: Nonparametric statistical inference (Colloquia Mathematica Societatis János Bolyai 32, 779–784). Amsterdam: North Holland 1982 · Zbl 0518.60046
[14] Strassen, V.: An invariance principle for the law of the iterated logarithm. Z. Wahrscheinlichkeitstheor. Verw. Geb. 3, 211–226 (1964) · Zbl 0132.12903 · doi:10.1007/BF00534910
[15] Wittmann, R.: A general law of iterated logarithm. Z. Wahrscheinlichkeitstheor. Verw. Geb. 68, 521–543 (1985) · Zbl 0547.60036 · doi:10.1007/BF00535343
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.