×

zbMATH — the first resource for mathematics

Confidence intervals on the among group variance component in the unbalanced one-fold nested design. (English) Zbl 0609.62049
A new method is proposed for constructing a confidence interval on the among group variance component in an unbalanced one-fold nested design. Computer simulation is used to compare this method with alternative procedures. The results indicate that the method performs well over a wide range of design conditions.

MSC:
62F25 Parametric tolerance and confidence regions
62J10 Analysis of variance and covariance (ANOVA)
65C99 Probabilistic methods, stochastic differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.2307/2529647 · Zbl 0286.62055 · doi:10.2307/2529647
[2] Bulmer M.G., Biometrika 44 pp 159– (1957) · Zbl 0080.12803 · doi:10.1093/biomet/44.1-2.159
[3] Burdick R. K., Communications in Statistics (1986)
[4] DOI: 10.2307/2683542 · doi:10.2307/2683542
[5] DOI: 10.2307/2286019 · Zbl 0291.62059 · doi:10.2307/2286019
[6] DOI: 10.2307/3314965 · Zbl 0374.62035 · doi:10.2307/3314965
[7] Moriguti S., Rep. Statist. Appl.Res. Juse 3 pp 7– (1954)
[8] DOI: 10.2307/3002019 · doi:10.2307/3002019
[9] Scheffe H., Analysis of Variance (1959) · Zbl 0072.36602
[10] DOI: 10.1214/aos/1176344202 · Zbl 0386.62057 · doi:10.1214/aos/1176344202
[11] DOI: 10.2307/3001602 · doi:10.2307/3001602
[12] DOI: 10.2307/2280809 · Zbl 0072.36206 · doi:10.2307/2280809
[13] Williams J.S., Biometrika 49 pp 278– (1962)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.