zbMATH — the first resource for mathematics

Module structures on the K-theory of graded rings. (English) Zbl 0611.13012
Let \(R\) be a commutative ring; \(A=A_ 0+A_ 1+..\). a graded \(R\)- algebra, with R concentrated in degree \(0;\) and, \(A_+\) the graded ideal \(A_ 1+A_ 2+... \). Let \(W(R)\) be the ring of Witt vectors over \(R\). Then there is a continuous \(W(R)\)-module structure on each group \(K_ i(A,A_+)\). This structure is natural on the category of graded \(A\)- algebras. If \(R\) contains \({\mathbb{Q}}\), then each \(K_ i(A,A_+)\) has a natural \(R\)-module structure via the ring map \(\lambda: R\to W(R).\) The \(W(R)\)-module structure agrees with a pairing given by S. Bloch [J. Algebra 53, 304-326 (1978; Zbl 0432.14014)]. Examples include formulas for the \(R\)- and \(W(R)\)-module structures on \(K_ 2(A,A_+)\).
Reviewer: R.M.Najar

13D15 Grothendieck groups, \(K\)-theory and commutative rings
13K05 Witt vectors and related rings (MSC2000)
Full Text: DOI
[1] Bass, H, Algebraic K-theory, (1968), Benjamin New York · Zbl 0174.30302
[2] Bloch, S, Algebraic K-theory and crystalline cohomology, Publ. I. H. E. S. (Paris), 47, 188-268, (1978)
[3] Bloch, S, Some formulas pertaining to the K-theory of commutative groupschemes, J. algebra, 53, 304-326, (1978) · Zbl 0432.14014
[4] Cartier, P, Modules associés à un groupe formal commutatif, courbes typiques, C. R. acad. sci. Paris, 265, 129-132, (1967) · Zbl 0168.27502
[5] Jacobson, N, Lie algebras, (1962), Interscience New York · JFM 61.1044.02
[6] Quillen, D, Higher algebraic K-theory: I, () · Zbl 0292.18004
[7] Reid, L, Some results on the lower K-theory of singular affine algebras, J. pure applied algebra, 42, 185-198, (1986) · Zbl 0617.14007
[8] Stienstra, J, Deformations of the second Chow-group, Ph.D. thesis, (1978), Utrecht
[9] Stienstra, J, On K2 and K2 of truncated polynomial rings, ()
[10] Stienstra, J, Operations in the higher K-theory of endomorphisms, (), Part 2 · Zbl 0545.18004
[11] Srinivas, V, Vector bundles on the cone over a curve, Compositio math., 47, 249-269, (1982) · Zbl 0512.14010
[12] Swan, R, Excision in algebraic K-theory, J. pure appl. algebra, 1, 221-252, (1971) · Zbl 0262.16025
[13] van der Kallen, W, Le K2 de nombres duaux, C. R. acad. sci. Paris, 273, 1204-1207, (1971) · Zbl 0225.13006
[14] van der Kallen, W; Stienstra, J, The relative K2 of truncated polynomial rings, J. pure appl. algebra, 34, 277-289, (1984) · Zbl 0548.13008
[15] Weibel, C, Mayer-Vietoris sequences and module structures on NK∗, () · Zbl 0487.18012
[16] Weibel, C, Mayer-Vietoris sequences and mod pK-theory, () · Zbl 0499.18012
[17] Weibel, C, Complete intersection points on smooth affine surfaces, (1981), unpublished preprint
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.