×

zbMATH — the first resource for mathematics

The triplex vaccine effects in mammary carcinoma: a nonlinear model in tune with SimTriplex. (English) Zbl 1401.92139
Summary: This paper deals with the mathematical modeling of the mammary carcinoma-immune system competition elicited by an external stimulus represented by three different protocols of the triplex vaccine [C. De Giovanni et al., “Immunoprevention of HER-2/neu transgenic mammary carcinoma through an interleukin 12-engineered allogeneic cell vaccine”, Cancer Research 64, 4001–4009 (2004)]. The presented model is composed of nonlinear ordinary differential equations based on parameters and cell populations. A qualitative analysis of the asymptotic behavior of the model and numerical simulations are able to depict preclinical experiments on transgenic mice in tune with the SimTriplex model [F. Pappalardo et al., “Modelling and simulation of cancer immunoprevention vaccine”, Bioinformatics 21, 2891–2897 (2005)]. The results are of great interest both in the applied and theoretical sciences.

MSC:
92C60 Medical epidemiology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bar-Yam, Y., ()
[2] Bianca, C.; Bellomo, N., ()
[3] Bianca, C.; Pennisi, M., Immune system modelling by top-down and bottom-up approaches, International mathematical forum, 7, 109-128, (2012) · Zbl 1250.92017
[4] Eftimie, R.; Bramson, J.L.; Earn, D.J.D., Interactions between the immune system and cancer: a brief review of non-spatial mathematical models, Bulletin of mathematical biology, 73, 2-32, (2011) · Zbl 1209.92028
[5] Baker, C.T.H.; Bocharov, G.A.; Paul, C.A.H., Mathematical modelling of the interleukin-2 \(\mathit{T}\)-cell system: a comparative study of approaches based on ordinary and delay differential equations, Journal of theoretical medicine, 2, 117-128, (1997) · Zbl 0904.92022
[6] Perelson, A.S.; Weisbuch, G., Immunology for physicists, Reviews of modern physics, 69, 1219-1268, (1997)
[7] Přiikrylovà, D.; Jìlek, M.; Waniewski, J., Mathematical modeling of the immune response, (1992), CRC Press · Zbl 0900.92082
[8] De Giovanni, C., Immunoprevention of HER-2/neu transgenic mammary carcinoma through an interleukin 12-engineered allogeneic cell vaccine, Cancer research, 64, 4001-4009, (2004)
[9] Pappalardo, F.; Castiglione, F.; Lollini, P.L.; Motta, S., Modelling and simulation of cancer immunoprevention vaccine, Bioinformatics, 21, 2891-2897, (2005)
[10] Jorcyk, C.L.; Kolev, M.; Tawara, K.; Zubik-Kowal, B., Experimental versus numerical data for breast cancer progression, Nonlinear analysis: RWA, 13, 78-84, (2012) · Zbl 1238.92021
[11] Ko, W.; Ahn, I., Diffusive tumor-immune interaction systems under immunotherapy, Nonlinear analysis: RWA, 12, 3035-3045, (2011) · Zbl 1231.35270
[12] Wang, K.; Fan, A.; Torres, A., Global properties of an improved hepatitis B virus model, Nonlinear analysis: RWA, 11, 3131-3138, (2010) · Zbl 1197.34081
[13] Tao, Y., Global existence for a haptotaxis model of cancer invasion with tissue remodeling, Nonlinear analysis: RWA, 12, 418-435, (2011) · Zbl 1205.35144
[14] Alemani, D., Combining cellular automata and lattice Boltzmann method to model multiscale avascular tumor growth coupled with nutrient diffusion and immune competition, Journal of immunological methods, (2012)
[15] Ahn, I.; Park, J., Drug scheduling of cancer chemotherapy based on natural actor – critic approach, Biosystems, 106, 121-129, (2011)
[16] Clare, S.E.; Nakhlis, F.; Panetta, J.C., Molecular biology of breast cancer metastasis. the use of mathematical models to determine relapse and to predict response to chemotherapy in breast cancer, Breast cancer research, 2, 430-435, (2000)
[17] Roitt, I., Essential immunology, (1994), Blackwell
[18] Haslam, S.Z.; Woodward, T.L., Epithelial-cell-stromal-cell interactions and steroid hormone action in normal and cancerous mammary gland, Breast cancer research, 5, 208-215, (2003)
[19] Lollini, P.L.; Motta, S.; Pappalardo, F., Discovery of cancer vaccination protocols with a genetic algorithm driving an agent based simulator, BMC bioinformatics, 7, (2006)
[20] Palladini, A., In silico modeling and in vivo efficacy of cancer preventive vaccinations, Cancer research, 70, 7755-7763, (2010)
[21] Pappalardo, F.; Cincotti, A.; Motta, S.; Pennisi, M., Agent based modeling of atherosclerosis: a concrete help in personalized treatments, Lecture notes in artificial intelligence, 5755, 386-396, (2009)
[22] Pappalardo, F.; Musumeci, S.; Motta, S., Modeling immune system control of atherogenesis, Bioinformatics, 24, 1715-1721, (2008)
[23] Pennisi, M.; Pappalardo, F.; Motta, S., Agent based modeling of lung metastasis-immune system competition, Lecture notes in computer science, 5666, 1-3, (2009)
[24] Pennisi, M.; Pappalardo, F.; Palladini, A.; Nicoletti, G.; Nanni, P.; Lollini, P.-L.; Motta, S., Modeling the competition between lung metastases and the immune system using agents, BMC bioinformatics, 11, Suppl. 7, (2010)
[25] M. Pennisi, C. Bianca, F. Pappalardo, S. Motta, Modeling artificial immunity against mammary carcinoma, in: Proc. 10th Int. Conf. on Math. Meth. in Sci. and Eng., CMMSE 2010, 2010, pp. 753-756, ISBN: 978-84-613-5510-5.
[26] Bianca, C.; Pennisi, M.; Motta, S.; Ragusa, M.A., Immune system network and cancer vaccine, AIP conference Proceedings, 1389, 945-948, (2011)
[27] Schlub, T.E., Comparing the kinetics of \(\mathit{NK}\) cells, CD4, and CD8 \(\mathit{T}\) cells in murine cytomegalovirus infection, Journal of immunology, 187, 1385-1392, (2011)
[28] Lollini, P.L.; Motta, S.; Pappalardo, F., Modeling tumor immunology, Mathematical models and methods in applied sciences, 16, 1091-1124, (2006) · Zbl 1099.92036
[29] Alarcon, T.; Byrne, H.; Maini, P., A cellular automation model for tumor growth in inhomogeneous environment, Journal of theoretical biology, 225, 257-274, (2003)
[30] Gerlee, P.; Anderson, A., Evolution of cellmotility in an individual-based model of tumor growth, Journal of theoretical biology, 259, 67-83, (2009)
[31] Pappalardo, F.; Motta, S.; Lollini, P.L.; Mastriani, E., Analysis of vaccine’s schedule using models, Cell immunology, 244, 137-140, (2004)
[32] Malet, D.; De Pillis, L., A cellular automatamodel of tumor-immune system interactions, Journal of theoretical biology, 239, 334-350, (2006)
[33] Nowak, M.A.; Sigmund, K., Evolutionary dynamics of biological games, Science, 303, 793-799, (2004)
[34] Bianca, C., Mathematical modeling for keloid formation triggered by virus: malignant effects and immune system competition, Mathematical models and methods in applied sciences, 21, 389-419, (2011) · Zbl 1218.35236
[35] Bellouquid, A.; De Angelis, E., From kinetic models of multicellular growing systems to macroscopic biological tissue models, Nonlinear analysis: RWA, 12, 1111-1122, (2011) · Zbl 1203.92020
[36] Bianca, C., Kinetic theory for active particles modelling coupled to Gaussian thermostats, Applied mathematical sciences, 6, 651-660, (2012) · Zbl 1250.82025
[37] Bianca, C.; Fermo, L., Bifurcation diagrams for the moments of a kinetic type model of keloid-immune system competition, Computers and mathematics with applications, 61, 277-288, (2011) · Zbl 1211.37102
[38] He, Y.; Rappuoli, R.; De Groot, A.S.; Chen, R.T., Emerging vaccine informatics, Journal of biomedicine and biotechnology, (2010)
[39] Drucis, K.; Kolev, M.; Majdaa, W.; Zubik-Kowal, B., Nonlinear modeling with mammographic evidence of carcinoma, Nonlinear analysis: RWA, 11, 4326-4334, (2010) · Zbl 1197.92026
[40] Coscia, V., On the mathematical theory of living systems I: complexity analysis and representation, Mathematical and computer modelling, 54, 1919-1929, (2011) · Zbl 1235.92006
[41] Coscia, V.; Fermo, L.; Bellomo, N., On the mathematical theory of living systems II: the interplay between mathematics and system biology, Computers and mathematics with applications, 62, 3902-3911, (2011) · Zbl 1236.92005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.