×

Limitation principles for mixed finite elements based on the Hu-Washizu variational formulation. (English) Zbl 0613.73017

Limitation principles are applied for mixed finite elements based on the Hu-Washizu variational formulation. The discrete forms of the variational formulations are presented. Following, the limitation principles relating the Hu-Washizu and Hellinger-Reissner formulations are given. The main result is the equivalence between the Hu-Washizu and displacement formulations. Finally illustrative examples of the limitation principles are given.
Reviewer: J.Lovíšek

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Atluri, S.N., Alternate stress and conjugate strain measures and mixed variational formulations involving rigid rotations, Comput. & structures, 18, 93-116, (1983) · Zbl 0524.73043
[2] Bathe, K.J.; Dvorkin, E.N., A formulation of general shell elements—the use of mixed interpolation of tensorial components, (), 551-565
[3] Belytschko, T.; Hsieh, B.J., Nonlinear transient finite element analysis with convected coordinates, Internat. J. numer. meths. engrg., 7, 255-271, (1973) · Zbl 0265.73062
[4] Belytschko, T.; Stolarski, H.; Carpenter, N., A C0 triangular plate element with one-point quadrature, Internat. J. numer. meths. engrg, 20, 787-802, (1984) · Zbl 0528.73069
[5] Belytschko, T.; Stolarski, H.; Liu, W.K.; Carpenter, N.; Ong, J.S.-J., Stress projection for membrane and shear locking in shell finite elements, Comput. meths. appl. mech. engrg., 51, 221-258, (1985) · Zbl 0581.73091
[6] Belytschko, T.; Bachrach, W., Simple quadrilaterals with high coarse-mesh accuracy, Comput. meths. appl. mech. engrg., 54, 279-301, (1986) · Zbl 0579.73075
[7] Bergan, P.G.; Wang, X., Quadrilateral plate bending elements with shear deformations, Comput. & structures, 19, 1-2, 25-34, (1984) · Zbl 0549.73071
[8] Hildebrand, F.B., Methods of applied mathematics, (), 25 · Zbl 0049.09103
[9] Hughes, T.J.R., Equivalence of finite elements for nearly-incompressible elasticity, ASME J. appl. mech., 44, 181-183, (1977)
[10] Hughes, T.J.R.; Tezduyar, T.E., Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element, ASME J. appl. mech., 48, 587-596, (1981) · Zbl 0459.73069
[11] Hughes, T.J.R.; Malkus, D.S., A general penalty/mixed-equivalence theorem for anisotropic, incompressible finite elements, ()
[12] Liu, W.K.; Belytschko, T., Efficient linear and nonlinear heat conduction with a quadrilateral element, Internat. J. numer. meths. engrg., 20, 5, 931-948, (1984) · Zbl 0542.65067
[13] MacNeal, R.H., Derivation of element stiffness matrices by assumed strain distribution, Nucl. engrg. design, 70, 3-12, (1982)
[14] Malkus, D.S.; Hughes, T.J.R., Mixed finite element methods—reduced and selective integration techniques: a unification of concepts, Comput. meths. appl. mech. engrg., 15, 63-81, (1978) · Zbl 0381.73075
[15] Noor, A.K., Multifield (mixed and hybrid) finite element models, (), 127-156 · Zbl 0527.73068
[16] Oden, J.T.; Reddy, J.N., Some observations on properties of certain mixed finite element approximations, Internat. J. numer. meths. engrg., 9, 933-938, (1975) · Zbl 0313.65106
[17] Park, K.C.; Stanley, G.M., A curved C0 shell element based on assumed natural-coordinate strains, ASME J. appl. mech., 53, 278-290, (1986) · Zbl 0588.73137
[18] Shimodaira, H., Equivalence between mixed models and displacement models using reduced integration, Internat. J. numer. meths. engrg., 21, 89-104, (1985) · Zbl 0551.73069
[19] Simo, J.C.; Taylor, R.L.; Pister, K.S., Variational and projection methods for the volume constraint in finite deformation elasto-plasticity, Comput. meths. appl. mech. engrg., 51, 177-208, (1985) · Zbl 0554.73036
[20] Simo, J.C.; Hughes, T.J.R., On the variational foundations of assumed strain methods, J. appl. mech., 53, 51-54, (1986) · Zbl 0592.73019
[21] Stolarski, H.; Belytschko, T., Shear and membrane locking in curved C0 elements, Comput. meths. appl. mech. engrg., 41, 279-296, (1983) · Zbl 0509.73072
[22] Stolarski, H.; Belytschko, T.; Carpenter, N.; Kennedy, J., A simple triangular curved shell element, Engrg. comput., 3, 1, 210-218, (1984)
[23] Stolarski, H.; Belytschko, T., On the equivalence of mode decomposition and mixed finite elements based on the Hellinger-Reissner principle. part I: theory, Comput. meths. appl. mech. engrg., 58, 249-263, (1986) · Zbl 0595.73076
[24] Stolarski, H.; Belytschko, T., On the equivalence of mode decomposition and mixed finite elements based on the Hellinger-Reissner principle. part II: applications, Comput. meths. appl. mech. engrg., 58, 265-284, (1986) · Zbl 0595.73077
[25] de Veubeke, B.Fraeijs, Displacement and equilibrium models in the finite element method, (), 145-196 · Zbl 0245.73031
[26] Washizu, K., Variational methods in elasticity and plasticity, (1975), Pergamon Press Oxford · Zbl 0164.26001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.