zbMATH — the first resource for mathematics

Asymptotic analysis of an ordinary differential equation and non-uniqueness for a semilinear partial differential equation. (English) Zbl 0614.35043
Die Untersuchung der semilinearen Wärmeleitungsgleichung \[ \partial_ t\psi (t,x)=\Delta \psi (t,x)+| \psi (t,x)|^{\gamma -1} \psi (t,x) \] für \((t,x)\in (0,\infty)\times\mathbb R^ n\), \(\gamma >1\), auf Lösungen \(\psi (t,x)=t^{-1/(\gamma -1)} u(| x| / \sqrt{t})\), \(u: [0,\infty)\to \mathbb R\), \(u\in C^ 2\), führt auf die gewöhnliche Differentialgleichung \[ u''(x)+((n- 1)/x+x/2)u'(x)+(k/2)u(x)+| u(x)|^{\gamma -1} u(x)=0 \tag{*} \] mit \(u'(0)=0\), \(k=2/(\gamma -1)\) und \(x>0\).
Verf. setzt in der vorliegenden Arbeit die Untersuchungen der Gleichung (*) aus A. Haraux und Verf. [Indiana Univ. Math. J. 31, 167–189 (1982; Zbl 0465.35049)] auf Lösungsverhalten für \(x\to \infty\), Nullstellen der Lösungen und verschiedene Anfangsbedingungen bei \(x=0\) fort.
Reviewer: L. Jantscher

35K55 Nonlinear parabolic equations
35K58 Semilinear parabolic equations
35B40 Asymptotic behavior of solutions to PDEs
35C06 Self-similar solutions to PDEs
35A30 Geometric theory, characteristics, transformations in context of PDEs
Full Text: DOI
[1] P. Baras, Non-unicité des solutions d’une équation d’évolution non-linéaire, to appear.
[2] H. Brezis & A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, MRC Technical Summary Report # 2277, 1981.
[3] H. Fujita, On the blowing up of solutions of the Cauchy problem for ut=?u+u1+?, J. Fac. Sci. Univ. Tokyo, Sect. I 13 (1966), 109-124. · Zbl 0163.34002
[4] A. Haraux & F. B. Weissler, Non-uniqueness for a semilinear initial value problem, Ind. Univ. Math. J. 31 (1982), 167-189. · Zbl 0506.35055 · doi:10.1512/iumj.1982.31.31016
[5] K. McLeod & J. Serrin, Uniqueness of solutions of semilinear Poisson equations, Proc. Natl. Acad. Sci. 78 (1981), 6592-6595. · Zbl 0474.35047 · doi:10.1073/pnas.78.11.6592
[6] W.-M. Ni, Uniqueness, non-uniqueness, and related questions of nonlinear elliptic and parabolic equations, preprint.
[7] L. A. Peletier, D. Terman, & F. B. Weissler, On the equation ?u + 1/2 \(\times\) \(\deg\) ?u + f(u) =0, to appear. · Zbl 0615.35034
[8] F. B. Weissler, Local existence and non-existence for semilinear parabolic equations in L p, Ind. Univ. Math. J. 29 (1980), 79-102. · Zbl 0443.35034 · doi:10.1512/iumj.1980.29.29007
[9] F. B. Weissler, Existence and non-existence of global solutions for a semilinear heat equation, Is. J. Math. 38 (1981), 29-40. · Zbl 0476.35043 · doi:10.1007/BF02761845
[10] F. B. Weissler, L p-energy and blow-up for a semilinear heat equation, Proc. AMS symp. in nonlinear func. anal., July 1983, to appear.
[11] F. B. Weissler, Rapidly decaying solutions of an ordinary differential equation, with applications to semilinear elliptic and parabolic partial differential equations, following in this issue. · Zbl 0604.34034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.