×

Nonexistence of multiple black holes in asymptotically Euclidean static vacuum space-time. (English) Zbl 0615.53055

The authors prove that the exterior Schwarzschild solution is the only maximally extended static, vacuum, asymptotically euclidean (in a sense specified in the paper) space-time with regular compact black-hole boundary. The connectedness of the black-hole boundary has not been assumed a priori, but it is a consequence of this result. Thus for the given type of space-times multiple black holes do not exist. The Schoen- Yau-Witten positive mass theorem is an essential tool for the proof of this result.
Reviewer: Bernd Wegner

MSC:

53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
83C75 Space-time singularities, cosmic censorship, etc.
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Israel, W. (1968).Commun. Math. Phys.,8, 245-260.
[2] Müller zum Hagen, H., Robinson, D. and Seifert, H. J. (1973).Gen. Rel. Grav.,4, 53-78.
[3] Robinson, D. (1977).Gen. Rel. Grav.,8, 695-698. · Zbl 0429.53043
[4] Müller zum Hagen, H. and Seifert, H. J. (1973).Int. J. Theo. Phys.,8, 443-450.
[5] Gibbons, G. W. (1974).Commun. Math. Phys.,35, 13-23.
[6] Israel, W. and Khan, K. A. (1964).Nuovo Cimento,33, 331-344. · Zbl 0119.23802
[7] Masood-ul-Alam, M. (1986). ?On spherical symmetry of static perfect fluid space-time and the positive mass theorem,?Research report CMA-R03-86 (Centre for Mathematical Analysis, The Australian National University). · Zbl 0595.53060
[8] Müller zum Hagen, H. (1970).Proc. Cambridge Philos. Soc.,67, 415-421.
[9] Schoen, R. and Yau, S.-T. (1979).Commun. Math. Phys.,65, 45-76. · Zbl 0405.53045
[10] Witten, E. (1981).Commun. Math. Phys.,80, 381-402. · Zbl 1051.83532
[11] Bartnik, R.ANU preprint CMA-R33-85; to appear inCommun. Math. Phys.
[12] Masood-ul-Alam, M. (1985). Ph.D. thesis (The Australian National University).
[13] Lindblom, L. (1980).J. Math. Phys.,21, 1455-1459.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.